Loading…

Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network

Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring)....

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2004-10, Vol.114 (1), p.177-185
Main Authors: Bryjak, Jolanta, Ciesielski, Krzysztof, Zbiciński, Ireneusz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373
cites cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373
container_end_page 185
container_issue 1
container_start_page 177
container_title Journal of biotechnology
container_volume 114
creator Bryjak, Jolanta
Ciesielski, Krzysztof
Zbiciński, Ireneusz
description Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.
doi_str_mv 10.1016/j.jbiotec.2004.07.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66942110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165604003578</els_id><sourcerecordid>17702804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCTwCyoWKTcJ34lVWFKl5SEQvo2nL8mHrIxIPtFM2_x2EidUdXV7bOd-17D0KvMDQYMHu_a3aDD9nqpgUgDfAGoHuCNljwriaCdU_RpnCixoyyM3Se0g4K2FP8HJ1hShhhGG-Q_RaMHUc_bavgqu0466D2x1ElW-U7G_dqrPykdPb3KvswlcNyXx2iTXbSdgmlrKK-q4ZjpWL2zmtfQpOd47-S_4T46wV65tSY7Mu1XqDbTx9_Xn-pb75__nr94abWhPe5Vj011BmtmTOW9a3DmrZEON0aOjijgBsow7eDdpwR7XrlnBFGcDwIBR3vLtDlqe8hht-zTVnufdJlPjXZMCfJWE9ajKGA7_4Lli1SQXlZ7aM9MefQCiAFpCdQx5BStE4eot-reJQY5OJM7uTqTC7OJHBZ-pfc6_WBedhb85BaJRXg7QqopNXoopq0Tw8cw7wjVBTuzYlzKki1jYW5_dEC7gB6Brhnhbg6EbZIuPc2yqT94tH4aHWWJvhHPvsXtcDCew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17702804</pqid></control><display><type>article</type><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><source>Elsevier</source><creator>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</creator><creatorcontrib>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</creatorcontrib><description>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2004.07.003</identifier><identifier>PMID: 15464611</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural network ; Aspergillus niger ; Aspergillus niger - enzymology ; Biological and medical sciences ; Biotechnology ; Combinatorial Chemistry Techniques ; Computer Simulation ; Enzyme Activation - radiation effects ; enzyme inactivation ; Fundamental and applied biological sciences. Psychology ; glucan 1,4-alpha-glucosidase ; Glucan 1,4-alpha-Glucosidase - chemistry ; Glucoamylase ; heat inactivation ; Hot Temperature ; Kinetics ; mathematical models ; Modelling ; Models, Chemical ; Neural Networks (Computer) ; Protein Binding ; Protein Denaturation ; Stability modulation ; Starch - chemistry ; Substrate Specificity ; Temperature ; Thermal inactivation</subject><ispartof>Journal of biotechnology, 2004-10, Vol.114 (1), p.177-185</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</citedby><cites>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16173458$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15464611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryjak, Jolanta</creatorcontrib><creatorcontrib>Ciesielski, Krzysztof</creatorcontrib><creatorcontrib>Zbiciński, Ireneusz</creatorcontrib><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network</subject><subject>Aspergillus niger</subject><subject>Aspergillus niger - enzymology</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Combinatorial Chemistry Techniques</subject><subject>Computer Simulation</subject><subject>Enzyme Activation - radiation effects</subject><subject>enzyme inactivation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucan 1,4-alpha-glucosidase</subject><subject>Glucan 1,4-alpha-Glucosidase - chemistry</subject><subject>Glucoamylase</subject><subject>heat inactivation</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>mathematical models</subject><subject>Modelling</subject><subject>Models, Chemical</subject><subject>Neural Networks (Computer)</subject><subject>Protein Binding</subject><subject>Protein Denaturation</subject><subject>Stability modulation</subject><subject>Starch - chemistry</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Thermal inactivation</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAURi0EotPCTwCyoWKTcJ34lVWFKl5SEQvo2nL8mHrIxIPtFM2_x2EidUdXV7bOd-17D0KvMDQYMHu_a3aDD9nqpgUgDfAGoHuCNljwriaCdU_RpnCixoyyM3Se0g4K2FP8HJ1hShhhGG-Q_RaMHUc_bavgqu0466D2x1ElW-U7G_dqrPykdPb3KvswlcNyXx2iTXbSdgmlrKK-q4ZjpWL2zmtfQpOd47-S_4T46wV65tSY7Mu1XqDbTx9_Xn-pb75__nr94abWhPe5Vj011BmtmTOW9a3DmrZEON0aOjijgBsow7eDdpwR7XrlnBFGcDwIBR3vLtDlqe8hht-zTVnufdJlPjXZMCfJWE9ajKGA7_4Lli1SQXlZ7aM9MefQCiAFpCdQx5BStE4eot-reJQY5OJM7uTqTC7OJHBZ-pfc6_WBedhb85BaJRXg7QqopNXoopq0Tw8cw7wjVBTuzYlzKki1jYW5_dEC7gB6Brhnhbg6EbZIuPc2yqT94tH4aHWWJvhHPvsXtcDCew</recordid><startdate>20041019</startdate><enddate>20041019</enddate><creator>Bryjak, Jolanta</creator><creator>Ciesielski, Krzysztof</creator><creator>Zbiciński, Ireneusz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041019</creationdate><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><author>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network</topic><topic>Aspergillus niger</topic><topic>Aspergillus niger - enzymology</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Combinatorial Chemistry Techniques</topic><topic>Computer Simulation</topic><topic>Enzyme Activation - radiation effects</topic><topic>enzyme inactivation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucan 1,4-alpha-glucosidase</topic><topic>Glucan 1,4-alpha-Glucosidase - chemistry</topic><topic>Glucoamylase</topic><topic>heat inactivation</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>mathematical models</topic><topic>Modelling</topic><topic>Models, Chemical</topic><topic>Neural Networks (Computer)</topic><topic>Protein Binding</topic><topic>Protein Denaturation</topic><topic>Stability modulation</topic><topic>Starch - chemistry</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Thermal inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryjak, Jolanta</creatorcontrib><creatorcontrib>Ciesielski, Krzysztof</creatorcontrib><creatorcontrib>Zbiciński, Ireneusz</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryjak, Jolanta</au><au>Ciesielski, Krzysztof</au><au>Zbiciński, Ireneusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2004-10-19</date><risdate>2004</risdate><volume>114</volume><issue>1</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>15464611</pmid><doi>10.1016/j.jbiotec.2004.07.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2004-10, Vol.114 (1), p.177-185
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_66942110
source Elsevier
subjects Algorithms
Artificial Intelligence
Artificial neural network
Aspergillus niger
Aspergillus niger - enzymology
Biological and medical sciences
Biotechnology
Combinatorial Chemistry Techniques
Computer Simulation
Enzyme Activation - radiation effects
enzyme inactivation
Fundamental and applied biological sciences. Psychology
glucan 1,4-alpha-glucosidase
Glucan 1,4-alpha-Glucosidase - chemistry
Glucoamylase
heat inactivation
Hot Temperature
Kinetics
mathematical models
Modelling
Models, Chemical
Neural Networks (Computer)
Protein Binding
Protein Denaturation
Stability modulation
Starch - chemistry
Substrate Specificity
Temperature
Thermal inactivation
title Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20glucoamylase%20thermal%20inactivation%20in%20the%20presence%20of%20starch%20by%20artificial%20neural%20network&rft.jtitle=Journal%20of%20biotechnology&rft.au=Bryjak,%20Jolanta&rft.date=2004-10-19&rft.volume=114&rft.issue=1&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/j.jbiotec.2004.07.003&rft_dat=%3Cproquest_cross%3E17702804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17702804&rft_id=info:pmid/15464611&rfr_iscdi=true