Loading…
Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network
Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring)....
Saved in:
Published in: | Journal of biotechnology 2004-10, Vol.114 (1), p.177-185 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373 |
container_end_page | 185 |
container_issue | 1 |
container_start_page | 177 |
container_title | Journal of biotechnology |
container_volume | 114 |
creator | Bryjak, Jolanta Ciesielski, Krzysztof Zbiciński, Ireneusz |
description | Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN. |
doi_str_mv | 10.1016/j.jbiotec.2004.07.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66942110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165604003578</els_id><sourcerecordid>17702804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCTwCyoWKTcJ34lVWFKl5SEQvo2nL8mHrIxIPtFM2_x2EidUdXV7bOd-17D0KvMDQYMHu_a3aDD9nqpgUgDfAGoHuCNljwriaCdU_RpnCixoyyM3Se0g4K2FP8HJ1hShhhGG-Q_RaMHUc_bavgqu0466D2x1ElW-U7G_dqrPykdPb3KvswlcNyXx2iTXbSdgmlrKK-q4ZjpWL2zmtfQpOd47-S_4T46wV65tSY7Mu1XqDbTx9_Xn-pb75__nr94abWhPe5Vj011BmtmTOW9a3DmrZEON0aOjijgBsow7eDdpwR7XrlnBFGcDwIBR3vLtDlqe8hht-zTVnufdJlPjXZMCfJWE9ajKGA7_4Lli1SQXlZ7aM9MefQCiAFpCdQx5BStE4eot-reJQY5OJM7uTqTC7OJHBZ-pfc6_WBedhb85BaJRXg7QqopNXoopq0Tw8cw7wjVBTuzYlzKki1jYW5_dEC7gB6Brhnhbg6EbZIuPc2yqT94tH4aHWWJvhHPvsXtcDCew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17702804</pqid></control><display><type>article</type><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><source>Elsevier</source><creator>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</creator><creatorcontrib>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</creatorcontrib><description>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2004.07.003</identifier><identifier>PMID: 15464611</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural network ; Aspergillus niger ; Aspergillus niger - enzymology ; Biological and medical sciences ; Biotechnology ; Combinatorial Chemistry Techniques ; Computer Simulation ; Enzyme Activation - radiation effects ; enzyme inactivation ; Fundamental and applied biological sciences. Psychology ; glucan 1,4-alpha-glucosidase ; Glucan 1,4-alpha-Glucosidase - chemistry ; Glucoamylase ; heat inactivation ; Hot Temperature ; Kinetics ; mathematical models ; Modelling ; Models, Chemical ; Neural Networks (Computer) ; Protein Binding ; Protein Denaturation ; Stability modulation ; Starch - chemistry ; Substrate Specificity ; Temperature ; Thermal inactivation</subject><ispartof>Journal of biotechnology, 2004-10, Vol.114 (1), p.177-185</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</citedby><cites>FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16173458$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15464611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryjak, Jolanta</creatorcontrib><creatorcontrib>Ciesielski, Krzysztof</creatorcontrib><creatorcontrib>Zbiciński, Ireneusz</creatorcontrib><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network</subject><subject>Aspergillus niger</subject><subject>Aspergillus niger - enzymology</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Combinatorial Chemistry Techniques</subject><subject>Computer Simulation</subject><subject>Enzyme Activation - radiation effects</subject><subject>enzyme inactivation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucan 1,4-alpha-glucosidase</subject><subject>Glucan 1,4-alpha-Glucosidase - chemistry</subject><subject>Glucoamylase</subject><subject>heat inactivation</subject><subject>Hot Temperature</subject><subject>Kinetics</subject><subject>mathematical models</subject><subject>Modelling</subject><subject>Models, Chemical</subject><subject>Neural Networks (Computer)</subject><subject>Protein Binding</subject><subject>Protein Denaturation</subject><subject>Stability modulation</subject><subject>Starch - chemistry</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Thermal inactivation</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAURi0EotPCTwCyoWKTcJ34lVWFKl5SEQvo2nL8mHrIxIPtFM2_x2EidUdXV7bOd-17D0KvMDQYMHu_a3aDD9nqpgUgDfAGoHuCNljwriaCdU_RpnCixoyyM3Se0g4K2FP8HJ1hShhhGG-Q_RaMHUc_bavgqu0466D2x1ElW-U7G_dqrPykdPb3KvswlcNyXx2iTXbSdgmlrKK-q4ZjpWL2zmtfQpOd47-S_4T46wV65tSY7Mu1XqDbTx9_Xn-pb75__nr94abWhPe5Vj011BmtmTOW9a3DmrZEON0aOjijgBsow7eDdpwR7XrlnBFGcDwIBR3vLtDlqe8hht-zTVnufdJlPjXZMCfJWE9ajKGA7_4Lli1SQXlZ7aM9MefQCiAFpCdQx5BStE4eot-reJQY5OJM7uTqTC7OJHBZ-pfc6_WBedhb85BaJRXg7QqopNXoopq0Tw8cw7wjVBTuzYlzKki1jYW5_dEC7gB6Brhnhbg6EbZIuPc2yqT94tH4aHWWJvhHPvsXtcDCew</recordid><startdate>20041019</startdate><enddate>20041019</enddate><creator>Bryjak, Jolanta</creator><creator>Ciesielski, Krzysztof</creator><creator>Zbiciński, Ireneusz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041019</creationdate><title>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</title><author>Bryjak, Jolanta ; Ciesielski, Krzysztof ; Zbiciński, Ireneusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network</topic><topic>Aspergillus niger</topic><topic>Aspergillus niger - enzymology</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Combinatorial Chemistry Techniques</topic><topic>Computer Simulation</topic><topic>Enzyme Activation - radiation effects</topic><topic>enzyme inactivation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucan 1,4-alpha-glucosidase</topic><topic>Glucan 1,4-alpha-Glucosidase - chemistry</topic><topic>Glucoamylase</topic><topic>heat inactivation</topic><topic>Hot Temperature</topic><topic>Kinetics</topic><topic>mathematical models</topic><topic>Modelling</topic><topic>Models, Chemical</topic><topic>Neural Networks (Computer)</topic><topic>Protein Binding</topic><topic>Protein Denaturation</topic><topic>Stability modulation</topic><topic>Starch - chemistry</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Thermal inactivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryjak, Jolanta</creatorcontrib><creatorcontrib>Ciesielski, Krzysztof</creatorcontrib><creatorcontrib>Zbiciński, Ireneusz</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryjak, Jolanta</au><au>Ciesielski, Krzysztof</au><au>Zbiciński, Ireneusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2004-10-19</date><risdate>2004</risdate><volume>114</volume><issue>1</issue><spage>177</spage><epage>185</epage><pages>177-185</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system. Hence, one might expect multilateral correlations that could depreciate some efforts for phenomenological modelling. These obstacles forced to apply artificial neural network (ANN) modelling to map the enzyme activity decays. For this purpose, a dynamic network with four hidden neurons was selected. The database containing 42 data vectors was used for neural model training and verification process. The standard error of calculations and correlation coefficient (0.997–0.999) for dynamic simulations has proved correctness of the developed ANN.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>15464611</pmid><doi>10.1016/j.jbiotec.2004.07.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1656 |
ispartof | Journal of biotechnology, 2004-10, Vol.114 (1), p.177-185 |
issn | 0168-1656 1873-4863 |
language | eng |
recordid | cdi_proquest_miscellaneous_66942110 |
source | Elsevier |
subjects | Algorithms Artificial Intelligence Artificial neural network Aspergillus niger Aspergillus niger - enzymology Biological and medical sciences Biotechnology Combinatorial Chemistry Techniques Computer Simulation Enzyme Activation - radiation effects enzyme inactivation Fundamental and applied biological sciences. Psychology glucan 1,4-alpha-glucosidase Glucan 1,4-alpha-Glucosidase - chemistry Glucoamylase heat inactivation Hot Temperature Kinetics mathematical models Modelling Models, Chemical Neural Networks (Computer) Protein Binding Protein Denaturation Stability modulation Starch - chemistry Substrate Specificity Temperature Thermal inactivation |
title | Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20glucoamylase%20thermal%20inactivation%20in%20the%20presence%20of%20starch%20by%20artificial%20neural%20network&rft.jtitle=Journal%20of%20biotechnology&rft.au=Bryjak,%20Jolanta&rft.date=2004-10-19&rft.volume=114&rft.issue=1&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/j.jbiotec.2004.07.003&rft_dat=%3Cproquest_cross%3E17702804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-a95d5fdcc6fde692f1c5248fc2d5bfda07d01012bcf764cf9affd8d871b8a0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17702804&rft_id=info:pmid/15464611&rfr_iscdi=true |