Loading…

Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach

This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for f...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2009-04, Vol.45 (2), p.377-385
Main Authors: Clayden, Jonathan D., Storkey, Amos J., Maniega, Susana Muñoz, Bastin, Mark E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383
cites cdi_FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383
container_end_page 385
container_issue 2
container_start_page 377
container_title NeuroImage (Orlando, Fla.)
container_volume 45
creator Clayden, Jonathan D.
Storkey, Amos J.
Maniega, Susana Muñoz
Bastin, Mark E.
description This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation–Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test–retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.
doi_str_mv 10.1016/j.neuroimage.2008.12.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66950675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811908012779</els_id><sourcerecordid>20395564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383</originalsourceid><addsrcrecordid>eNqFkV-L3CAUxaW0dLfTfoUSKPQtqVejiY_tsv0DC4XSPovRm6nDRKdqtuy3r2EGFvqyT9erv3uOeghpgHZAQX44dAHXFP1i9tgxSscOWEeBPiPXQJVolRjY820teDsCqCvyKucDpVRBP74kV1CrVJJeE_yBpxTdav3kj748NHFuSjK2NBn3C4Ziio-hmbD8RQx1M-fa52bNPuwbE5o15PWE6d5ndM0SHR6P9aSdzNabUxU39vdr8mI2x4xvLnVHfn2-_Xnztb37_uXbzce71vYjlBY4ziiFmbkxfT85htgPjk0w8HlgswQ3DWAZymkEyQfBByX47FTPnQLOR74j78-61fbPirnoxWdbr2QCxjVrKZWgsg4-BTLKlRCyr-C7_8BDXFOoj9CwSY1cVXZHxjNlU8w54axPqYaTHjRQvSWmD_oxMb0lpoHpmlgdfXsxWKcF3ePgJaIKfDoDWD_u3mPS2XoMFp1PaIt20T_t8g9R8a4J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506783920</pqid></control><display><type>article</type><title>Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach</title><source>ScienceDirect Journals</source><creator>Clayden, Jonathan D. ; Storkey, Amos J. ; Maniega, Susana Muñoz ; Bastin, Mark E.</creator><creatorcontrib>Clayden, Jonathan D. ; Storkey, Amos J. ; Maniega, Susana Muñoz ; Bastin, Mark E.</creatorcontrib><description>This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation–Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test–retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2008.12.010</identifier><identifier>PMID: 19146960</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Artificial Intelligence ; Attention deficit hyperactivity disorder ; Brain ; Brain - anatomy &amp; histology ; Computer Simulation ; Diffusion Magnetic Resonance Imaging - methods ; Female ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Male ; Methods ; Models, Neurological ; Nerve Fibers, Myelinated - ultrastructure ; NMR ; Nuclear magnetic resonance ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-04, Vol.45 (2), p.377-385</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383</citedby><cites>FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19146960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clayden, Jonathan D.</creatorcontrib><creatorcontrib>Storkey, Amos J.</creatorcontrib><creatorcontrib>Maniega, Susana Muñoz</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><title>Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation–Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test–retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computer Simulation</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Male</subject><subject>Methods</subject><subject>Models, Neurological</subject><subject>Nerve Fibers, Myelinated - ultrastructure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L3CAUxaW0dLfTfoUSKPQtqVejiY_tsv0DC4XSPovRm6nDRKdqtuy3r2EGFvqyT9erv3uOeghpgHZAQX44dAHXFP1i9tgxSscOWEeBPiPXQJVolRjY820teDsCqCvyKucDpVRBP74kV1CrVJJeE_yBpxTdav3kj748NHFuSjK2NBn3C4Ziio-hmbD8RQx1M-fa52bNPuwbE5o15PWE6d5ndM0SHR6P9aSdzNabUxU39vdr8mI2x4xvLnVHfn2-_Xnztb37_uXbzce71vYjlBY4ziiFmbkxfT85htgPjk0w8HlgswQ3DWAZymkEyQfBByX47FTPnQLOR74j78-61fbPirnoxWdbr2QCxjVrKZWgsg4-BTLKlRCyr-C7_8BDXFOoj9CwSY1cVXZHxjNlU8w54axPqYaTHjRQvSWmD_oxMb0lpoHpmlgdfXsxWKcF3ePgJaIKfDoDWD_u3mPS2XoMFp1PaIt20T_t8g9R8a4J</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Clayden, Jonathan D.</creator><creator>Storkey, Amos J.</creator><creator>Maniega, Susana Muñoz</creator><creator>Bastin, Mark E.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach</title><author>Clayden, Jonathan D. ; Storkey, Amos J. ; Maniega, Susana Muñoz ; Bastin, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computer Simulation</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Male</topic><topic>Methods</topic><topic>Models, Neurological</topic><topic>Nerve Fibers, Myelinated - ultrastructure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clayden, Jonathan D.</creatorcontrib><creatorcontrib>Storkey, Amos J.</creatorcontrib><creatorcontrib>Maniega, Susana Muñoz</creatorcontrib><creatorcontrib>Bastin, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clayden, Jonathan D.</au><au>Storkey, Amos J.</au><au>Maniega, Susana Muñoz</au><au>Bastin, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>377</spage><epage>385</epage><pages>377-385</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation–Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test–retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19146960</pmid><doi>10.1016/j.neuroimage.2008.12.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2009-04, Vol.45 (2), p.377-385
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_66950675
source ScienceDirect Journals
subjects Adult
Algorithms
Artificial Intelligence
Attention deficit hyperactivity disorder
Brain
Brain - anatomy & histology
Computer Simulation
Diffusion Magnetic Resonance Imaging - methods
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Male
Methods
Models, Neurological
Nerve Fibers, Myelinated - ultrastructure
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
title Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducibility%20of%20tract%20segmentation%20between%20sessions%20using%20an%20unsupervised%20modelling-based%20approach&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Clayden,%20Jonathan%20D.&rft.date=2009-04-01&rft.volume=45&rft.issue=2&rft.spage=377&rft.epage=385&rft.pages=377-385&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2008.12.010&rft_dat=%3Cproquest_cross%3E20395564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-13efe65af3aa44bd2ee47d2b173f72f61db71c2e6b81637537953fd943d913383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506783920&rft_id=info:pmid/19146960&rfr_iscdi=true