Loading…
An optical-optical double resonance experiment in LiH molecules: lifetime measurements in the C state
An optical-optical double resonance sub-Doppler experiment is used to measure short nonradiative lifetimes in the C (1)Sigma(+) state of LiH. These lifetimes are expected to result from the strong electronic interaction between the C (1)Sigma(+) state and the continuum of the A (1)Sigma(+) state and...
Saved in:
Published in: | The Journal of chemical physics 2004-10, Vol.121 (15), p.7237-7242 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optical-optical double resonance sub-Doppler experiment is used to measure short nonradiative lifetimes in the C (1)Sigma(+) state of LiH. These lifetimes are expected to result from the strong electronic interaction between the C (1)Sigma(+) state and the continuum of the A (1)Sigma(+) state and to vary with the vibrational quantum number, from nanoseconds to milliseconds. The experimental setup combines a molecular beam of LiH, a first cw laser beam locked to a given A-X absorption line, and a second cw laser beam scanned over C-A absorption profiles. Analysis of these absorption profiles in terms of Voigt profiles shows that their Lorentzian components significantly vary with the vibrational quantum numbers of the C state. Nonradiative decay rates deduced this way are systematically larger than the calculated ones but their variations are similar. Coherent saturation effects cannot be invoked to explain this discrepancy. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1786919 |