Loading…

A novel plasmid DNA electroporation method allows transfection of murine DC

Under steady state conditions dendritic cells (DC) exert tolerogenic function, but acquire potent immunogenic function due to strong upregulation of costimulatory molecules and proinflammatory cytokines. In numerous studies the potential of modified DC to induce tolerance or immune reactions towards...

Full description

Saved in:
Bibliographic Details
Published in:Journal of immunological methods 2009-03, Vol.343 (1), p.13-20
Main Authors: Bros, Matthias, Wiechmann, Nadine, Besche, Verena, Castor, Timo, Sudowe, Stephan, Grabbe, Stephan, Reske-Kunz, Angelika B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under steady state conditions dendritic cells (DC) exert tolerogenic function, but acquire potent immunogenic function due to strong upregulation of costimulatory molecules and proinflammatory cytokines. In numerous studies the potential of modified DC to induce tolerance or immune reactions towards a distinct antigen has been demonstrated. However, DC are refractory to transfection with plasmid DNA by non-viral methods. In this study we have tested the suitability of a newly developed electroporation device to transfect immature murine bone-marrow derived DC (BM-DC). Transfected BM-DC expressed reporter molecules at considerable extent which renders this method suitable to perform all kinds of promoter studies. While electroporation did not alter the low allostimulatory capacity of immature BM-DC, it impaired the stimulation-associated increase in allostimulatory potency of transfectants. However, stimulated transfected BM-DC pulsed with myelin oligodendrocyte protein (MOG)-derived peptide induced proliferation of MOG-reactive CD4 + T cells as potently as did non-transfected MOG peptide-pulsed BM-DC. BM-DC transfected with an expression construct encoding MOG efficiently stimulated MOG peptide-specific T cell proliferation. Transfection of BM-DC with an IL-10 encoding expression construct resulted in high IL-10 expression and strongly diminished allogeneic T cell proliferation. Therefore, this method also allows to study functional properties of genetically altered DC.
ISSN:0022-1759
1872-7905
DOI:10.1016/j.jim.2009.01.006