Loading…

Immobilization of urease by laser techniques: Synthesis and application to urea biosensors

Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Biomedical Materials Research Part B 2009-04, Vol.89A (1), p.186-191
Main Authors: György, E., Sima, F., Mihailescu, I. N., Smausz, T., Megyeri, G., Kékesi, R., Hopp, B., Zdrentu, L., Petrescu, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3
cites cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3
container_end_page 191
container_issue 1
container_start_page 186
container_title Journal of Biomedical Materials Research Part B
container_volume 89A
creator György, E.
Sima, F.
Mihailescu, I. N.
Smausz, T.
Megyeri, G.
Kékesi, R.
Hopp, B.
Zdrentu, L.
Petrescu, S. M.
description Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009
doi_str_mv 10.1002/jbm.a.31963
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66976576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33302972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqVw4o584lJl8bdjblCVpagtSBSQuFi2M1Fdknixs2qXX0-22ZYbPc0cnuedkV6EXlKyoISwN1e-X7gFp0bxR2ifSskqYZR8vN2FqTgzag89K-VqghWR7Cnao7XgVNd8H_086fvkYxf_uDGmAacWrzO4AthvcDfNjEcIl0P8vYbyFn_dDOMllFiwGxrsVqsuhlkc062IfUwFhpJyeY6etK4r8GI3D9C3D8cXRx-r08_Lk6N3p1UQSvFKuha8IoJoIQT3sgmqbr1WTe0D04KBDCEYrxkPirSCippQ2jgZeA3aaeAH6PWcu8pp--Vo-1gCdJ0bIK2LVcpoJbV6EOScE2amQw-BjEgjeU0n8HAGQ06lZGjtKsfe5Y2lxG7LsVM51tnbcib61S527Xto_rG7NiaAzsB17GDzvyz76f3ZXWg1O7GMcHPvuPzLKs21tD_Ol5Z-_3JuzPLCnvG_992p5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20595381</pqid></control><display><type>article</type><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</creator><creatorcontrib>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</creatorcontrib><description>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.a.31963</identifier><identifier>PMID: 18431783</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biosensing Techniques - methods ; enzyme based sensors ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; laser techniques ; Lasers ; Microscopy, Atomic Force ; Surface Properties ; Urea - analysis ; Urease - chemistry ; Urease - metabolism ; urease thin films</subject><ispartof>Journal of Biomedical Materials Research Part B, 2009-04, Vol.89A (1), p.186-191</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>Copyright 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</citedby><cites>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18431783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>György, E.</creatorcontrib><creatorcontrib>Sima, F.</creatorcontrib><creatorcontrib>Mihailescu, I. N.</creatorcontrib><creatorcontrib>Smausz, T.</creatorcontrib><creatorcontrib>Megyeri, G.</creatorcontrib><creatorcontrib>Kékesi, R.</creatorcontrib><creatorcontrib>Hopp, B.</creatorcontrib><creatorcontrib>Zdrentu, L.</creatorcontrib><creatorcontrib>Petrescu, S. M.</creatorcontrib><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><title>Journal of Biomedical Materials Research Part B</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</description><subject>Animals</subject><subject>Biosensing Techniques - methods</subject><subject>enzyme based sensors</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>laser techniques</subject><subject>Lasers</subject><subject>Microscopy, Atomic Force</subject><subject>Surface Properties</subject><subject>Urea - analysis</subject><subject>Urease - chemistry</subject><subject>Urease - metabolism</subject><subject>urease thin films</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EoqVw4o584lJl8bdjblCVpagtSBSQuFi2M1Fdknixs2qXX0-22ZYbPc0cnuedkV6EXlKyoISwN1e-X7gFp0bxR2ifSskqYZR8vN2FqTgzag89K-VqghWR7Cnao7XgVNd8H_086fvkYxf_uDGmAacWrzO4AthvcDfNjEcIl0P8vYbyFn_dDOMllFiwGxrsVqsuhlkc062IfUwFhpJyeY6etK4r8GI3D9C3D8cXRx-r08_Lk6N3p1UQSvFKuha8IoJoIQT3sgmqbr1WTe0D04KBDCEYrxkPirSCippQ2jgZeA3aaeAH6PWcu8pp--Vo-1gCdJ0bIK2LVcpoJbV6EOScE2amQw-BjEgjeU0n8HAGQ06lZGjtKsfe5Y2lxG7LsVM51tnbcib61S527Xto_rG7NiaAzsB17GDzvyz76f3ZXWg1O7GMcHPvuPzLKs21tD_Ol5Z-_3JuzPLCnvG_992p5A</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>György, E.</creator><creator>Sima, F.</creator><creator>Mihailescu, I. N.</creator><creator>Smausz, T.</creator><creator>Megyeri, G.</creator><creator>Kékesi, R.</creator><creator>Hopp, B.</creator><creator>Zdrentu, L.</creator><creator>Petrescu, S. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><author>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biosensing Techniques - methods</topic><topic>enzyme based sensors</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>laser techniques</topic><topic>Lasers</topic><topic>Microscopy, Atomic Force</topic><topic>Surface Properties</topic><topic>Urea - analysis</topic><topic>Urease - chemistry</topic><topic>Urease - metabolism</topic><topic>urease thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>György, E.</creatorcontrib><creatorcontrib>Sima, F.</creatorcontrib><creatorcontrib>Mihailescu, I. N.</creatorcontrib><creatorcontrib>Smausz, T.</creatorcontrib><creatorcontrib>Megyeri, G.</creatorcontrib><creatorcontrib>Kékesi, R.</creatorcontrib><creatorcontrib>Hopp, B.</creatorcontrib><creatorcontrib>Zdrentu, L.</creatorcontrib><creatorcontrib>Petrescu, S. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Materials Research Part B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>György, E.</au><au>Sima, F.</au><au>Mihailescu, I. N.</au><au>Smausz, T.</au><au>Megyeri, G.</au><au>Kékesi, R.</au><au>Hopp, B.</au><au>Zdrentu, L.</au><au>Petrescu, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</atitle><jtitle>Journal of Biomedical Materials Research Part B</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>89A</volume><issue>1</issue><spage>186</spage><epage>191</epage><pages>186-191</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><eissn>1552-4981</eissn><abstract>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18431783</pmid><doi>10.1002/jbm.a.31963</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of Biomedical Materials Research Part B, 2009-04, Vol.89A (1), p.186-191
issn 1549-3296
1552-4965
1552-4981
language eng
recordid cdi_proquest_miscellaneous_66976576
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Biosensing Techniques - methods
enzyme based sensors
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
laser techniques
Lasers
Microscopy, Atomic Force
Surface Properties
Urea - analysis
Urease - chemistry
Urease - metabolism
urease thin films
title Immobilization of urease by laser techniques: Synthesis and application to urea biosensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20urease%20by%20laser%20techniques:%20Synthesis%20and%20application%20to%20urea%20biosensors&rft.jtitle=Journal%20of%20Biomedical%20Materials%20Research%20Part%20B&rft.au=Gy%C3%B6rgy,%20E.&rft.date=2009-04-01&rft.volume=89A&rft.issue=1&rft.spage=186&rft.epage=191&rft.pages=186-191&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31963&rft_dat=%3Cproquest_cross%3E33302972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20595381&rft_id=info:pmid/18431783&rfr_iscdi=true