Loading…
Immobilization of urease by laser techniques: Synthesis and application to urea biosensors
Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm,...
Saved in:
Published in: | Journal of Biomedical Materials Research Part B 2009-04, Vol.89A (1), p.186-191 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3 |
container_end_page | 191 |
container_issue | 1 |
container_start_page | 186 |
container_title | Journal of Biomedical Materials Research Part B |
container_volume | 89A |
creator | György, E. Sima, F. Mihailescu, I. N. Smausz, T. Megyeri, G. Kékesi, R. Hopp, B. Zdrentu, L. Petrescu, S. M. |
description | Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009 |
doi_str_mv | 10.1002/jbm.a.31963 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66976576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33302972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqVw4o584lJl8bdjblCVpagtSBSQuFi2M1Fdknixs2qXX0-22ZYbPc0cnuedkV6EXlKyoISwN1e-X7gFp0bxR2ifSskqYZR8vN2FqTgzag89K-VqghWR7Cnao7XgVNd8H_086fvkYxf_uDGmAacWrzO4AthvcDfNjEcIl0P8vYbyFn_dDOMllFiwGxrsVqsuhlkc062IfUwFhpJyeY6etK4r8GI3D9C3D8cXRx-r08_Lk6N3p1UQSvFKuha8IoJoIQT3sgmqbr1WTe0D04KBDCEYrxkPirSCippQ2jgZeA3aaeAH6PWcu8pp--Vo-1gCdJ0bIK2LVcpoJbV6EOScE2amQw-BjEgjeU0n8HAGQ06lZGjtKsfe5Y2lxG7LsVM51tnbcib61S527Xto_rG7NiaAzsB17GDzvyz76f3ZXWg1O7GMcHPvuPzLKs21tD_Ol5Z-_3JuzPLCnvG_992p5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20595381</pqid></control><display><type>article</type><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</creator><creatorcontrib>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</creatorcontrib><description>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.a.31963</identifier><identifier>PMID: 18431783</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Biosensing Techniques - methods ; enzyme based sensors ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; laser techniques ; Lasers ; Microscopy, Atomic Force ; Surface Properties ; Urea - analysis ; Urease - chemistry ; Urease - metabolism ; urease thin films</subject><ispartof>Journal of Biomedical Materials Research Part B, 2009-04, Vol.89A (1), p.186-191</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>Copyright 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</citedby><cites>FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18431783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>György, E.</creatorcontrib><creatorcontrib>Sima, F.</creatorcontrib><creatorcontrib>Mihailescu, I. N.</creatorcontrib><creatorcontrib>Smausz, T.</creatorcontrib><creatorcontrib>Megyeri, G.</creatorcontrib><creatorcontrib>Kékesi, R.</creatorcontrib><creatorcontrib>Hopp, B.</creatorcontrib><creatorcontrib>Zdrentu, L.</creatorcontrib><creatorcontrib>Petrescu, S. M.</creatorcontrib><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><title>Journal of Biomedical Materials Research Part B</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</description><subject>Animals</subject><subject>Biosensing Techniques - methods</subject><subject>enzyme based sensors</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>laser techniques</subject><subject>Lasers</subject><subject>Microscopy, Atomic Force</subject><subject>Surface Properties</subject><subject>Urea - analysis</subject><subject>Urease - chemistry</subject><subject>Urease - metabolism</subject><subject>urease thin films</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EoqVw4o584lJl8bdjblCVpagtSBSQuFi2M1Fdknixs2qXX0-22ZYbPc0cnuedkV6EXlKyoISwN1e-X7gFp0bxR2ifSskqYZR8vN2FqTgzag89K-VqghWR7Cnao7XgVNd8H_086fvkYxf_uDGmAacWrzO4AthvcDfNjEcIl0P8vYbyFn_dDOMllFiwGxrsVqsuhlkc062IfUwFhpJyeY6etK4r8GI3D9C3D8cXRx-r08_Lk6N3p1UQSvFKuha8IoJoIQT3sgmqbr1WTe0D04KBDCEYrxkPirSCippQ2jgZeA3aaeAH6PWcu8pp--Vo-1gCdJ0bIK2LVcpoJbV6EOScE2amQw-BjEgjeU0n8HAGQ06lZGjtKsfe5Y2lxG7LsVM51tnbcib61S527Xto_rG7NiaAzsB17GDzvyz76f3ZXWg1O7GMcHPvuPzLKs21tD_Ol5Z-_3JuzPLCnvG_992p5A</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>György, E.</creator><creator>Sima, F.</creator><creator>Mihailescu, I. N.</creator><creator>Smausz, T.</creator><creator>Megyeri, G.</creator><creator>Kékesi, R.</creator><creator>Hopp, B.</creator><creator>Zdrentu, L.</creator><creator>Petrescu, S. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</title><author>György, E. ; Sima, F. ; Mihailescu, I. N. ; Smausz, T. ; Megyeri, G. ; Kékesi, R. ; Hopp, B. ; Zdrentu, L. ; Petrescu, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biosensing Techniques - methods</topic><topic>enzyme based sensors</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>laser techniques</topic><topic>Lasers</topic><topic>Microscopy, Atomic Force</topic><topic>Surface Properties</topic><topic>Urea - analysis</topic><topic>Urease - chemistry</topic><topic>Urease - metabolism</topic><topic>urease thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>György, E.</creatorcontrib><creatorcontrib>Sima, F.</creatorcontrib><creatorcontrib>Mihailescu, I. N.</creatorcontrib><creatorcontrib>Smausz, T.</creatorcontrib><creatorcontrib>Megyeri, G.</creatorcontrib><creatorcontrib>Kékesi, R.</creatorcontrib><creatorcontrib>Hopp, B.</creatorcontrib><creatorcontrib>Zdrentu, L.</creatorcontrib><creatorcontrib>Petrescu, S. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Biomedical Materials Research Part B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>György, E.</au><au>Sima, F.</au><au>Mihailescu, I. N.</au><au>Smausz, T.</au><au>Megyeri, G.</au><au>Kékesi, R.</au><au>Hopp, B.</au><au>Zdrentu, L.</au><au>Petrescu, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of urease by laser techniques: Synthesis and application to urea biosensors</atitle><jtitle>Journal of Biomedical Materials Research Part B</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>89A</volume><issue>1</issue><spage>186</spage><epage>191</epage><pages>186-191</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><eissn>1552-4981</eissn><abstract>Urease thin films have been immobilized using matrix‐assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (λ = 248 nm, τFWHM ≅ 30 ns, ν = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18431783</pmid><doi>10.1002/jbm.a.31963</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of Biomedical Materials Research Part B, 2009-04, Vol.89A (1), p.186-191 |
issn | 1549-3296 1552-4965 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_66976576 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Biosensing Techniques - methods enzyme based sensors Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism laser techniques Lasers Microscopy, Atomic Force Surface Properties Urea - analysis Urease - chemistry Urease - metabolism urease thin films |
title | Immobilization of urease by laser techniques: Synthesis and application to urea biosensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20urease%20by%20laser%20techniques:%20Synthesis%20and%20application%20to%20urea%20biosensors&rft.jtitle=Journal%20of%20Biomedical%20Materials%20Research%20Part%20B&rft.au=Gy%C3%B6rgy,%20E.&rft.date=2009-04-01&rft.volume=89A&rft.issue=1&rft.spage=186&rft.epage=191&rft.pages=186-191&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31963&rft_dat=%3Cproquest_cross%3E33302972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4663-5afeb604074443b5dc68fb76d8bc2742e5ccc9b723c60f4148011da5c38e7a7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20595381&rft_id=info:pmid/18431783&rfr_iscdi=true |