Loading…

Small-Molecule Insulin Mimetic Reduces Hyperglycemia and Obesity in a Nongenetic Mouse Model of Type 2 Diabetes

Adiposity positively correlates with insulin resistance and is a major risk factor of type 2 diabetes. Administration of exogenous insulin, which acts as an anabolic factor, facilitates adipogenesis. Recently nonpeptidal insulin receptor (IR) activators have been discovered. Here we evaluate the eff...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2004-11, Vol.145 (11), p.5259-5268
Main Authors: Strowski, Mathias Z, Li, Zhihua, Szalkowski, Deborah, Shen, Xiaolan, Guan, Xiao-Ming, Jüttner, Stefan, Moller, David E, Zhang, Bei B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adiposity positively correlates with insulin resistance and is a major risk factor of type 2 diabetes. Administration of exogenous insulin, which acts as an anabolic factor, facilitates adipogenesis. Recently nonpeptidal insulin receptor (IR) activators have been discovered. Here we evaluate the effects of the orally bioavailable small-molecule IR activator (Compound-2) on metabolic abnormalities associated with type 2 diabetes using a nongenetic mouse model in comparison with the effects of a novel non-thiazolidinedione (nTZD) peroxisome proliferator-activated receptor-γ agonist. Both Compound-2 and nTZD alleviated fasting and postprandial hyperglycemia; accelerated glucose clearance rate; and normalized plasma levels of nonesterified fatty acids, triglycerides, and leptin. Unlike nTZD, which increased body weight gain, and total fat mass, which is a common feature for PPARγ agonists, Compound-2 prevented body weight gain and hypertrophy of brown, and white adipose tissue depots and the development of hepatic steatosis in the mouse model of type 2 diabetes. The effect of the two compounds on proximal steps in insulin signal transduction pathway was analyzed in tissues. Compound-2 enhanced insulin-stimulated phosphorylation of IR tyrosine and/or Akt in the liver, skeletal muscle, and white adipose tissue, whereas nTZD potentiated the phosphorylation of IR and Akt in the adipose tissue only. In conclusion, small-molecule IR activators have unique features as insulin sensitizers and hold potential utility in the treatment of type 2 diabetes and obesity.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2004-0610