Loading…
Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis
We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination...
Saved in:
Published in: | Plant physiology (Bethesda) 2004-10, Vol.136 (2), p.3134-3147 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673 |
container_end_page | 3147 |
container_issue | 2 |
container_start_page | 3134 |
container_title | Plant physiology (Bethesda) |
container_volume | 136 |
creator | Ruggiero, B Koiwa, H Manabe, Y Quist, T.M Inan, G Saccardo, F Joly, R.J Hasegawa, P.M Bressan, R.A Maggio, A |
description | We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses. |
doi_str_mv | 10.1104/pp.104.046169 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66980237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356664</jstor_id><sourcerecordid>4356664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</originalsourceid><addsrcrecordid>eNpVkktv1DAUhSMEokNhyQ6BN7AiU7_iJMtRxUuqxAJmHd0411NXmTjYjqr-KX4jN8yIik1OpPP5WDrHRfFa8K0QXF_N85Zky7URpn1SbESlZCkr3TwtNpzTP2-a9qJ4kdId51wooZ8XF6LSxkilNsXv_WTDMo9-OrB8iwydQ5sTC45Bn6xP3jKwfmBhYvMIU2aHGO7zLYNpYPeQMbKII2QfprRluwnGh-T_Hk85iKvJ4qA-Evx_Wjmg89YjxfVLZglG-uSIKZU5jBjXe45LXsVPbBeh90OYKfhl8czBmPDVWS-L_edPP6-_ljffv3y73t2UtuJNLoeqHWSjK4sSJQyWI2otRdvXiou2BipLkAFNUytZ105zpaDuHVhnQJpaXRYfTrlzDL8WTLk7-mRxpAYwLKkzpm24VCtYnkAbQ0oRXTdHf4T40AnerQN189ytchqI-Lfn4KU_4vBInxch4P0ZgGRhdNQF9fbIGdESxYl7c-LuqOj4z9eqMsZost-dbAehg0OkiP0PSftz3hp6CJX6A2qXras</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66980237</pqid></control><display><type>article</type><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</creator><creatorcontrib>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</creatorcontrib><description>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.104.046169</identifier><identifier>PMID: 15466233</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>9-cis-epoxicarotenoid dioxygenase ; abscisic acid ; Abscisic Acid - metabolism ; Abscisic Acid - pharmacology ; Abscisic Acid - physiology ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; biosynthesis ; chromosome mapping ; circadian rhythm ; Dehydration ; Environmental Stress and Adaptation ; ethylene ; Ethylenes - pharmacology ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Genes ; genetic complementation ; Genetic mutation ; Germination ; hypersensitive response ; insertional mutagenesis ; Lithium Chloride - pharmacology ; loci ; messenger RNA ; Molecular Sequence Data ; mutants ; Mutation ; nucleotide sequences ; Osmotic Pressure ; osmotic stress ; oxygenases ; Phenotype ; Phenotypes ; phenotypic variation ; Physical agents ; Plant cells ; Plant growth ; Plant Leaves - metabolism ; plant morphology ; Plant physiology and development ; plant proteins ; plant stress ; Plant Transpiration - genetics ; plant-water relations ; Plants ; Potassium Chloride - pharmacology ; Salt tolerance ; Seedlings ; signal transduction ; Sodium Chloride - pharmacology ; soil water ; soil-plant interactions ; stomatal movement ; transfer DNA ; transgenic plants ; Vegetative apparatus, growth and morphogenesis. Senescence ; Water - metabolism ; water stress</subject><ispartof>Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3134-3147</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</citedby><cites>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356664$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356664$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16193330$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15466233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruggiero, B</creatorcontrib><creatorcontrib>Koiwa, H</creatorcontrib><creatorcontrib>Manabe, Y</creatorcontrib><creatorcontrib>Quist, T.M</creatorcontrib><creatorcontrib>Inan, G</creatorcontrib><creatorcontrib>Saccardo, F</creatorcontrib><creatorcontrib>Joly, R.J</creatorcontrib><creatorcontrib>Hasegawa, P.M</creatorcontrib><creatorcontrib>Bressan, R.A</creatorcontrib><creatorcontrib>Maggio, A</creatorcontrib><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</description><subject>9-cis-epoxicarotenoid dioxygenase</subject><subject>abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Abscisic Acid - pharmacology</subject><subject>Abscisic Acid - physiology</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>chromosome mapping</subject><subject>circadian rhythm</subject><subject>Dehydration</subject><subject>Environmental Stress and Adaptation</subject><subject>ethylene</subject><subject>Ethylenes - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>genetic complementation</subject><subject>Genetic mutation</subject><subject>Germination</subject><subject>hypersensitive response</subject><subject>insertional mutagenesis</subject><subject>Lithium Chloride - pharmacology</subject><subject>loci</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Osmotic Pressure</subject><subject>osmotic stress</subject><subject>oxygenases</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>phenotypic variation</subject><subject>Physical agents</subject><subject>Plant cells</subject><subject>Plant growth</subject><subject>Plant Leaves - metabolism</subject><subject>plant morphology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>plant stress</subject><subject>Plant Transpiration - genetics</subject><subject>plant-water relations</subject><subject>Plants</subject><subject>Potassium Chloride - pharmacology</subject><subject>Salt tolerance</subject><subject>Seedlings</subject><subject>signal transduction</subject><subject>Sodium Chloride - pharmacology</subject><subject>soil water</subject><subject>soil-plant interactions</subject><subject>stomatal movement</subject><subject>transfer DNA</subject><subject>transgenic plants</subject><subject>Vegetative apparatus, growth and morphogenesis. Senescence</subject><subject>Water - metabolism</subject><subject>water stress</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpVkktv1DAUhSMEokNhyQ6BN7AiU7_iJMtRxUuqxAJmHd0411NXmTjYjqr-KX4jN8yIik1OpPP5WDrHRfFa8K0QXF_N85Zky7URpn1SbESlZCkr3TwtNpzTP2-a9qJ4kdId51wooZ8XF6LSxkilNsXv_WTDMo9-OrB8iwydQ5sTC45Bn6xP3jKwfmBhYvMIU2aHGO7zLYNpYPeQMbKII2QfprRluwnGh-T_Hk85iKvJ4qA-Evx_Wjmg89YjxfVLZglG-uSIKZU5jBjXe45LXsVPbBeh90OYKfhl8czBmPDVWS-L_edPP6-_ljffv3y73t2UtuJNLoeqHWSjK4sSJQyWI2otRdvXiou2BipLkAFNUytZ105zpaDuHVhnQJpaXRYfTrlzDL8WTLk7-mRxpAYwLKkzpm24VCtYnkAbQ0oRXTdHf4T40AnerQN189ytchqI-Lfn4KU_4vBInxch4P0ZgGRhdNQF9fbIGdESxYl7c-LuqOj4z9eqMsZost-dbAehg0OkiP0PSftz3hp6CJX6A2qXras</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ruggiero, B</creator><creator>Koiwa, H</creator><creator>Manabe, Y</creator><creator>Quist, T.M</creator><creator>Inan, G</creator><creator>Saccardo, F</creator><creator>Joly, R.J</creator><creator>Hasegawa, P.M</creator><creator>Bressan, R.A</creator><creator>Maggio, A</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041001</creationdate><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><author>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>9-cis-epoxicarotenoid dioxygenase</topic><topic>abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Abscisic Acid - pharmacology</topic><topic>Abscisic Acid - physiology</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>chromosome mapping</topic><topic>circadian rhythm</topic><topic>Dehydration</topic><topic>Environmental Stress and Adaptation</topic><topic>ethylene</topic><topic>Ethylenes - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>genetic complementation</topic><topic>Genetic mutation</topic><topic>Germination</topic><topic>hypersensitive response</topic><topic>insertional mutagenesis</topic><topic>Lithium Chloride - pharmacology</topic><topic>loci</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Osmotic Pressure</topic><topic>osmotic stress</topic><topic>oxygenases</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>phenotypic variation</topic><topic>Physical agents</topic><topic>Plant cells</topic><topic>Plant growth</topic><topic>Plant Leaves - metabolism</topic><topic>plant morphology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>plant stress</topic><topic>Plant Transpiration - genetics</topic><topic>plant-water relations</topic><topic>Plants</topic><topic>Potassium Chloride - pharmacology</topic><topic>Salt tolerance</topic><topic>Seedlings</topic><topic>signal transduction</topic><topic>Sodium Chloride - pharmacology</topic><topic>soil water</topic><topic>soil-plant interactions</topic><topic>stomatal movement</topic><topic>transfer DNA</topic><topic>transgenic plants</topic><topic>Vegetative apparatus, growth and morphogenesis. Senescence</topic><topic>Water - metabolism</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruggiero, B</creatorcontrib><creatorcontrib>Koiwa, H</creatorcontrib><creatorcontrib>Manabe, Y</creatorcontrib><creatorcontrib>Quist, T.M</creatorcontrib><creatorcontrib>Inan, G</creatorcontrib><creatorcontrib>Saccardo, F</creatorcontrib><creatorcontrib>Joly, R.J</creatorcontrib><creatorcontrib>Hasegawa, P.M</creatorcontrib><creatorcontrib>Bressan, R.A</creatorcontrib><creatorcontrib>Maggio, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruggiero, B</au><au>Koiwa, H</au><au>Manabe, Y</au><au>Quist, T.M</au><au>Inan, G</au><au>Saccardo, F</au><au>Joly, R.J</au><au>Hasegawa, P.M</au><au>Bressan, R.A</au><au>Maggio, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>136</volume><issue>2</issue><spage>3134</spage><epage>3147</epage><pages>3134-3147</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15466233</pmid><doi>10.1104/pp.104.046169</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3134-3147 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_66980237 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | 9-cis-epoxicarotenoid dioxygenase abscisic acid Abscisic Acid - metabolism Abscisic Acid - pharmacology Abscisic Acid - physiology Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis thaliana Biological and medical sciences biosynthesis chromosome mapping circadian rhythm Dehydration Environmental Stress and Adaptation ethylene Ethylenes - pharmacology Fundamental and applied biological sciences. Psychology gene expression regulation Genes genetic complementation Genetic mutation Germination hypersensitive response insertional mutagenesis Lithium Chloride - pharmacology loci messenger RNA Molecular Sequence Data mutants Mutation nucleotide sequences Osmotic Pressure osmotic stress oxygenases Phenotype Phenotypes phenotypic variation Physical agents Plant cells Plant growth Plant Leaves - metabolism plant morphology Plant physiology and development plant proteins plant stress Plant Transpiration - genetics plant-water relations Plants Potassium Chloride - pharmacology Salt tolerance Seedlings signal transduction Sodium Chloride - pharmacology soil water soil-plant interactions stomatal movement transfer DNA transgenic plants Vegetative apparatus, growth and morphogenesis. Senescence Water - metabolism water stress |
title | Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20the%20effects%20of%20abscisic%20acid%20on%20plant%20growth%20and%20water%20relations.%20Analysis%20of%20sto1/nced3,%20an%20abscisic%20acid-deficient%20but%20salt%20stress-tolerant%20mutant%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ruggiero,%20B&rft.date=2004-10-01&rft.volume=136&rft.issue=2&rft.spage=3134&rft.epage=3147&rft.pages=3134-3147&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.104.046169&rft_dat=%3Cjstor_proqu%3E4356664%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66980237&rft_id=info:pmid/15466233&rft_jstor_id=4356664&rfr_iscdi=true |