Loading…

Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis

We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2004-10, Vol.136 (2), p.3134-3147
Main Authors: Ruggiero, B, Koiwa, H, Manabe, Y, Quist, T.M, Inan, G, Saccardo, F, Joly, R.J, Hasegawa, P.M, Bressan, R.A, Maggio, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673
cites cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673
container_end_page 3147
container_issue 2
container_start_page 3134
container_title Plant physiology (Bethesda)
container_volume 136
creator Ruggiero, B
Koiwa, H
Manabe, Y
Quist, T.M
Inan, G
Saccardo, F
Joly, R.J
Hasegawa, P.M
Bressan, R.A
Maggio, A
description We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.
doi_str_mv 10.1104/pp.104.046169
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66980237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356664</jstor_id><sourcerecordid>4356664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</originalsourceid><addsrcrecordid>eNpVkktv1DAUhSMEokNhyQ6BN7AiU7_iJMtRxUuqxAJmHd0411NXmTjYjqr-KX4jN8yIik1OpPP5WDrHRfFa8K0QXF_N85Zky7URpn1SbESlZCkr3TwtNpzTP2-a9qJ4kdId51wooZ8XF6LSxkilNsXv_WTDMo9-OrB8iwydQ5sTC45Bn6xP3jKwfmBhYvMIU2aHGO7zLYNpYPeQMbKII2QfprRluwnGh-T_Hk85iKvJ4qA-Evx_Wjmg89YjxfVLZglG-uSIKZU5jBjXe45LXsVPbBeh90OYKfhl8czBmPDVWS-L_edPP6-_ljffv3y73t2UtuJNLoeqHWSjK4sSJQyWI2otRdvXiou2BipLkAFNUytZ105zpaDuHVhnQJpaXRYfTrlzDL8WTLk7-mRxpAYwLKkzpm24VCtYnkAbQ0oRXTdHf4T40AnerQN189ytchqI-Lfn4KU_4vBInxch4P0ZgGRhdNQF9fbIGdESxYl7c-LuqOj4z9eqMsZost-dbAehg0OkiP0PSftz3hp6CJX6A2qXras</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66980237</pqid></control><display><type>article</type><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</creator><creatorcontrib>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</creatorcontrib><description>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.104.046169</identifier><identifier>PMID: 15466233</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>9-cis-epoxicarotenoid dioxygenase ; abscisic acid ; Abscisic Acid - metabolism ; Abscisic Acid - pharmacology ; Abscisic Acid - physiology ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; biosynthesis ; chromosome mapping ; circadian rhythm ; Dehydration ; Environmental Stress and Adaptation ; ethylene ; Ethylenes - pharmacology ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Genes ; genetic complementation ; Genetic mutation ; Germination ; hypersensitive response ; insertional mutagenesis ; Lithium Chloride - pharmacology ; loci ; messenger RNA ; Molecular Sequence Data ; mutants ; Mutation ; nucleotide sequences ; Osmotic Pressure ; osmotic stress ; oxygenases ; Phenotype ; Phenotypes ; phenotypic variation ; Physical agents ; Plant cells ; Plant growth ; Plant Leaves - metabolism ; plant morphology ; Plant physiology and development ; plant proteins ; plant stress ; Plant Transpiration - genetics ; plant-water relations ; Plants ; Potassium Chloride - pharmacology ; Salt tolerance ; Seedlings ; signal transduction ; Sodium Chloride - pharmacology ; soil water ; soil-plant interactions ; stomatal movement ; transfer DNA ; transgenic plants ; Vegetative apparatus, growth and morphogenesis. Senescence ; Water - metabolism ; water stress</subject><ispartof>Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3134-3147</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</citedby><cites>FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356664$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356664$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16193330$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15466233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruggiero, B</creatorcontrib><creatorcontrib>Koiwa, H</creatorcontrib><creatorcontrib>Manabe, Y</creatorcontrib><creatorcontrib>Quist, T.M</creatorcontrib><creatorcontrib>Inan, G</creatorcontrib><creatorcontrib>Saccardo, F</creatorcontrib><creatorcontrib>Joly, R.J</creatorcontrib><creatorcontrib>Hasegawa, P.M</creatorcontrib><creatorcontrib>Bressan, R.A</creatorcontrib><creatorcontrib>Maggio, A</creatorcontrib><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</description><subject>9-cis-epoxicarotenoid dioxygenase</subject><subject>abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Abscisic Acid - pharmacology</subject><subject>Abscisic Acid - physiology</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>chromosome mapping</subject><subject>circadian rhythm</subject><subject>Dehydration</subject><subject>Environmental Stress and Adaptation</subject><subject>ethylene</subject><subject>Ethylenes - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Genes</subject><subject>genetic complementation</subject><subject>Genetic mutation</subject><subject>Germination</subject><subject>hypersensitive response</subject><subject>insertional mutagenesis</subject><subject>Lithium Chloride - pharmacology</subject><subject>loci</subject><subject>messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Osmotic Pressure</subject><subject>osmotic stress</subject><subject>oxygenases</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>phenotypic variation</subject><subject>Physical agents</subject><subject>Plant cells</subject><subject>Plant growth</subject><subject>Plant Leaves - metabolism</subject><subject>plant morphology</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>plant stress</subject><subject>Plant Transpiration - genetics</subject><subject>plant-water relations</subject><subject>Plants</subject><subject>Potassium Chloride - pharmacology</subject><subject>Salt tolerance</subject><subject>Seedlings</subject><subject>signal transduction</subject><subject>Sodium Chloride - pharmacology</subject><subject>soil water</subject><subject>soil-plant interactions</subject><subject>stomatal movement</subject><subject>transfer DNA</subject><subject>transgenic plants</subject><subject>Vegetative apparatus, growth and morphogenesis. Senescence</subject><subject>Water - metabolism</subject><subject>water stress</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpVkktv1DAUhSMEokNhyQ6BN7AiU7_iJMtRxUuqxAJmHd0411NXmTjYjqr-KX4jN8yIik1OpPP5WDrHRfFa8K0QXF_N85Zky7URpn1SbESlZCkr3TwtNpzTP2-a9qJ4kdId51wooZ8XF6LSxkilNsXv_WTDMo9-OrB8iwydQ5sTC45Bn6xP3jKwfmBhYvMIU2aHGO7zLYNpYPeQMbKII2QfprRluwnGh-T_Hk85iKvJ4qA-Evx_Wjmg89YjxfVLZglG-uSIKZU5jBjXe45LXsVPbBeh90OYKfhl8czBmPDVWS-L_edPP6-_ljffv3y73t2UtuJNLoeqHWSjK4sSJQyWI2otRdvXiou2BipLkAFNUytZ105zpaDuHVhnQJpaXRYfTrlzDL8WTLk7-mRxpAYwLKkzpm24VCtYnkAbQ0oRXTdHf4T40AnerQN189ytchqI-Lfn4KU_4vBInxch4P0ZgGRhdNQF9fbIGdESxYl7c-LuqOj4z9eqMsZost-dbAehg0OkiP0PSftz3hp6CJX6A2qXras</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ruggiero, B</creator><creator>Koiwa, H</creator><creator>Manabe, Y</creator><creator>Quist, T.M</creator><creator>Inan, G</creator><creator>Saccardo, F</creator><creator>Joly, R.J</creator><creator>Hasegawa, P.M</creator><creator>Bressan, R.A</creator><creator>Maggio, A</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041001</creationdate><title>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</title><author>Ruggiero, B ; Koiwa, H ; Manabe, Y ; Quist, T.M ; Inan, G ; Saccardo, F ; Joly, R.J ; Hasegawa, P.M ; Bressan, R.A ; Maggio, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>9-cis-epoxicarotenoid dioxygenase</topic><topic>abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Abscisic Acid - pharmacology</topic><topic>Abscisic Acid - physiology</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>chromosome mapping</topic><topic>circadian rhythm</topic><topic>Dehydration</topic><topic>Environmental Stress and Adaptation</topic><topic>ethylene</topic><topic>Ethylenes - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Genes</topic><topic>genetic complementation</topic><topic>Genetic mutation</topic><topic>Germination</topic><topic>hypersensitive response</topic><topic>insertional mutagenesis</topic><topic>Lithium Chloride - pharmacology</topic><topic>loci</topic><topic>messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Osmotic Pressure</topic><topic>osmotic stress</topic><topic>oxygenases</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>phenotypic variation</topic><topic>Physical agents</topic><topic>Plant cells</topic><topic>Plant growth</topic><topic>Plant Leaves - metabolism</topic><topic>plant morphology</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>plant stress</topic><topic>Plant Transpiration - genetics</topic><topic>plant-water relations</topic><topic>Plants</topic><topic>Potassium Chloride - pharmacology</topic><topic>Salt tolerance</topic><topic>Seedlings</topic><topic>signal transduction</topic><topic>Sodium Chloride - pharmacology</topic><topic>soil water</topic><topic>soil-plant interactions</topic><topic>stomatal movement</topic><topic>transfer DNA</topic><topic>transgenic plants</topic><topic>Vegetative apparatus, growth and morphogenesis. Senescence</topic><topic>Water - metabolism</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruggiero, B</creatorcontrib><creatorcontrib>Koiwa, H</creatorcontrib><creatorcontrib>Manabe, Y</creatorcontrib><creatorcontrib>Quist, T.M</creatorcontrib><creatorcontrib>Inan, G</creatorcontrib><creatorcontrib>Saccardo, F</creatorcontrib><creatorcontrib>Joly, R.J</creatorcontrib><creatorcontrib>Hasegawa, P.M</creatorcontrib><creatorcontrib>Bressan, R.A</creatorcontrib><creatorcontrib>Maggio, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruggiero, B</au><au>Koiwa, H</au><au>Manabe, Y</au><au>Quist, T.M</au><au>Inan, G</au><au>Saccardo, F</au><au>Joly, R.J</au><au>Hasegawa, P.M</au><au>Bressan, R.A</au><au>Maggio, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>136</volume><issue>2</issue><spage>3134</spage><epage>3147</epage><pages>3134-3147</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We have identified a T-DNA insertion mutation of Arabidopsis (ecotype C24), named sto1 (salt tolerant), that results in enhanced germination on both ionic (NaCl) and nonionic (sorbitol) hyperosmotic media. sto1 plants were more tolerant in vitro than wild type to Na(+) and K(+) both for germination and subsequent growth but were hypersensitive to Li(+). Postgermination growth of the sto1 plants on sorbitol was not improved. Analysis of the amino acid sequence revealed that STO1 encodes a 9-cis-epoxicarotenoid dioxygenase (similar to 9-cis-epoxicarotenoid dioxygenase GB:AAF26356 Phaseolus vulgaris and to NCED3 GB:AB020817 Arabidopsis), a key enzyme in the abscisic acid (ABA) biosynthetic pathway. STO1 transcript abundance was substantially reduced in mutant plants. Mutant sto1 plants were unable to accumulate ABA following a hyperosmotic stress, although their basal ABA level was only moderately altered. Either complementation of the sto1 with the native gene from the wild-type genome or supplementation of ABA to the growth medium restored the wild-type phenotype. Improved growth of sto1 mutant plants on NaCl, but not sorbitol, medium was associated with a reduction in both NaCl-induced expression of the ICK1 gene and ethylene accumulation. Osmotic adjustment of sto1 plants was substantially reduced compared to wild-type plants under conditions where sto1 plants grew faster. The sto1 mutation has revealed that reduced ABA can lead to more rapid growth during hyperionic stress by a signal pathway that apparently is at least partially independent of signals that mediate nonionic osmotic responses.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15466233</pmid><doi>10.1104/pp.104.046169</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3134-3147
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_66980237
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects 9-cis-epoxicarotenoid dioxygenase
abscisic acid
Abscisic Acid - metabolism
Abscisic Acid - pharmacology
Abscisic Acid - physiology
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis thaliana
Biological and medical sciences
biosynthesis
chromosome mapping
circadian rhythm
Dehydration
Environmental Stress and Adaptation
ethylene
Ethylenes - pharmacology
Fundamental and applied biological sciences. Psychology
gene expression regulation
Genes
genetic complementation
Genetic mutation
Germination
hypersensitive response
insertional mutagenesis
Lithium Chloride - pharmacology
loci
messenger RNA
Molecular Sequence Data
mutants
Mutation
nucleotide sequences
Osmotic Pressure
osmotic stress
oxygenases
Phenotype
Phenotypes
phenotypic variation
Physical agents
Plant cells
Plant growth
Plant Leaves - metabolism
plant morphology
Plant physiology and development
plant proteins
plant stress
Plant Transpiration - genetics
plant-water relations
Plants
Potassium Chloride - pharmacology
Salt tolerance
Seedlings
signal transduction
Sodium Chloride - pharmacology
soil water
soil-plant interactions
stomatal movement
transfer DNA
transgenic plants
Vegetative apparatus, growth and morphogenesis. Senescence
Water - metabolism
water stress
title Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20the%20effects%20of%20abscisic%20acid%20on%20plant%20growth%20and%20water%20relations.%20Analysis%20of%20sto1/nced3,%20an%20abscisic%20acid-deficient%20but%20salt%20stress-tolerant%20mutant%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ruggiero,%20B&rft.date=2004-10-01&rft.volume=136&rft.issue=2&rft.spage=3134&rft.epage=3147&rft.pages=3134-3147&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.104.046169&rft_dat=%3Cjstor_proqu%3E4356664%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d59d2845ce2e2adc0ee44219b730197a4611e2aa8873277f4033a7bfacf6a2673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66980237&rft_id=info:pmid/15466233&rft_jstor_id=4356664&rfr_iscdi=true