Loading…
TIMP-3 deficiency leads to dilated cardiomyopathy
Despite the mounting clinical burden of heart failure, the biomolecules that control myocardial tissue remodeling are poorly understood. TIMP-3 is an endogenous inhibitor of matrix metalloproteinases (MMPs) that has been found to be deficient in failing human myocardium. We hypothesized that TIMP-3...
Saved in:
Published in: | Circulation (New York, N.Y.) N.Y.), 2004-10, Vol.110 (16), p.2401-2409 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the mounting clinical burden of heart failure, the biomolecules that control myocardial tissue remodeling are poorly understood. TIMP-3 is an endogenous inhibitor of matrix metalloproteinases (MMPs) that has been found to be deficient in failing human myocardium. We hypothesized that TIMP-3 expression prevents maladaptive tissue remodeling in the heart, and accordingly, its deficiency in mice would alone be sufficient to trigger progressive cardiac remodeling and dysfunction similar to human heart failure.
Mice with a targeted timp-3 deficiency were evaluated with aging and compared with age-matched wild-type littermates. Loss of timp-3 function triggered spontaneous LV dilatation, cardiomyocyte hypertrophy, and contractile dysfunction at 21 months of age consistent with human dilated cardiomyopathy. Its absence also resulted in interstitial matrix disruption with elevated MMP-9 activity, and activation of the proinflammatory tumor necrosis factor-alpha cytokine system, molecular hallmarks of human myocardial remodeling.
TIMP-3 deficiency disrupts matrix homeostasis and the balance of inflammatory mediators, eliciting the transition to cardiac dilation and dysfunction. Therapeutic restoration of myocardial TIMP-3 may provide a novel approach to limit cardiac remodeling and the progression to failure in patients with dilated cardiomyopathy. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.cir.0000134959.83967.2d |