Loading…

Crystal Structures of Calpain–E64 and –Leupeptin Inhibitor Complexes Reveal Mobile Loops Gating the Active Site

The endogenous calpain inhibitor, calpastatin, modulates some patho-physiological aspects of calpain signaling. Excess calpain can escape this inhibition and as well, many calpain isoforms and autolytically generated protease core fragments are not inhibited by calpastatin. There is a need, therefor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2004-11, Vol.343 (5), p.1313-1326
Main Authors: Moldoveanu, T., Campbell, R.L., Cuerrier, D., Davies, P.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The endogenous calpain inhibitor, calpastatin, modulates some patho-physiological aspects of calpain signaling. Excess calpain can escape this inhibition and as well, many calpain isoforms and autolytically generated protease core fragments are not inhibited by calpastatin. There is a need, therefore, to develop specific, cell-permeable calpain inhibitors to block uncontrolled proteolysis and prevent tissue damage during brain and heart ischemia, spinal-cord injury and Alzheimer's diseases. Here, we report the first high-resolution crystal structures of rat μ-calpain protease core complexed with two traditional, low molecular mass inhibitors, leupeptin and E64. These structures show that access to a slightly deeper, but otherwise papain-like active site is gated by two flexible loops. These loops are divergent among the calpain isoforms giving a potential structural basis for substrate/inhibitor selectivity over other papain-like cysteine proteases and between members of the calpain family.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2004.09.016