Loading…

Superkicks in hyperbolic encounters of binary black holes

Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration....

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2009-01, Vol.102 (4), p.041101-041101, Article 041101
Main Authors: Healy, James, Herrmann, Frank, Hinder, Ian, Shoemaker, Deirdre M, Laguna, Pablo, Matzner, Richard A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasicircular inspirals, for which kicks as large as approximately 3300 km s;(-1) have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasicircular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible in highly relativistic scatterings to achieve kick velocities as large as 10 000 km s;(-1).
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.102.041101