Loading…

Photoreceptor topography and cone-specific electroretinograms

It is implicit in many cone-specific ERG studies that the amplitude is proportional to the numbers of cones stimulated. The objective of these experiments was to test this idea by comparing ERGs obtained from different areas of the retina with histological data on cone-density distributions. The his...

Full description

Saved in:
Bibliographic Details
Published in:Visual neuroscience 2004-05, Vol.21 (3), p.231-235
Main Authors: MURRAY, I.J., PARRY, N.R.A., KREMERS, J., STEPIEN, M., SCHILD, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is implicit in many cone-specific ERG studies that the amplitude is proportional to the numbers of cones stimulated. The objective of these experiments was to test this idea by comparing ERGs obtained from different areas of the retina with histological data on cone-density distributions. The histology (Curcio et al., 1990) shows that the cumulative number of cones in the human retina increases exponentially with stimulus diameter between 0- and 40-deg eccentricity. L-, M-, and (L+M) cone-driven 30-Hz ERGs were obtained from a series of stimuli with one of the following configurations: (1) Circular stimuli of different angular subtense up to 70-deg diameter. (2) Annuli with 70-deg outer diameter but variable inner diameter. (3) Annuli of constant area but increasing eccentricity. Cone contrasts were equalized for each stimulus condition. The modulated and nonmodulated regions of the screen had the same mean hue and luminance. The data suggest that the L+M cone ERG amplitude increases with stimulus diameter in direct proportion to the estimated number of cones stimulated. Furthermore, the total L+M responses appear to be predicted from individual L and M responses by simple linear summation for both the disc and annular stimuli.
ISSN:0952-5238
1469-8714
DOI:10.1017/S0952523804213268