Loading…

Atomic Layer Deposition of Metal Tellurides and Selenides Using Alkylsilyl Compounds of Tellurium and Selenium

Atomic layer deposition (ALD) of metal selenide and telluride thin films has been limited because of a lack of precursors that would at the same time be safe and exhibit high reactivity as required in ALD. Yet there are many important metal selenide and telluride thin film materials whose deposition...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2009-03, Vol.131 (10), p.3478-3480
Main Authors: Pore, Viljami, Hatanpää, Timo, Ritala, Mikko, Leskelä, Markku
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomic layer deposition (ALD) of metal selenide and telluride thin films has been limited because of a lack of precursors that would at the same time be safe and exhibit high reactivity as required in ALD. Yet there are many important metal selenide and telluride thin film materials whose deposition by ALD might be beneficial, for example, CuInSe2 for solar cells and Ge2Sb2Te5 for phase-change random-access memories. Especially in the latter case highly conformal deposition offered by ALD is essential for high storage density. By now, ALD of germanium antimony telluride (GST) has been attempted only using plasma-assisted processes owing to the lack of appropriate tellurium precursors. In this paper we make a breakthrough in the development of new ALD precursors for tellurium and selenium. Compounds with a general formula (R3Si)2Te and (R3Si)2Se react with various metal halides forming the corresponding metal tellurides and selenides. As an example, we show that Sb2Te3, GeTe, and GST films can be deposited by ALD using (Et3Si)2Te, SbCl3, and GeCl2·C4H8O2 compounds as precursors. All three precursors exhibit a typical saturative ALD growth behavior and GST films prepared at 90 °C show excellent conformality on a high aspect-ratio trench structure.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja8090388