Loading…
Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award
Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of...
Saved in:
Published in: | Progress in biophysics and molecular biology 2009, Vol.99 (1), p.20-41 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 20 |
container_title | Progress in biophysics and molecular biology |
container_volume | 99 |
creator | Kocherginsky, Nikolai |
description | Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H
+) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H
+ into the membrane. An acidic lipid, cardiolipin, binds with this H
+ and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis. |
doi_str_mv | 10.1016/j.pbiomolbio.2008.10.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67030205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610708000680</els_id><sourcerecordid>67030205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERZfCKyCf4AAJY7sbJ8dtBRSpLXsoZ8uxJ9pZJXGws4XlHfrOeLUr9chhPJqZbzz2_IxxAaUAUX3ellNLYQh9PksJUOd0CUK9YAtRa1UIreRLtgDQTVEJ0OfsdUpbAJBCV6_YuWjgsqmFXLCnlSNPjvc0kU-f-A3_WKwe1jZhDuzo-YBuY0dKAw8dD3_I25kekU-bkLLFfZ_jMJZ8vdkncqFwGxzI2Z6TR5u4Ar5HGxO33YyRr0t-R3Nm-v5D4vehxZ6vI_1Fbn_b6N-ws872Cd-e_AX7-fXLw_VNcfvj2_fr1W3hLqWcC_Qol03TWinAgdKoMad0A6IV6GqlKqxk66FDlDVK3-hl27WN7RQoJ5ZOXbD3x3unGH7tMM1moOTyo-yIYZdMpUGBhGUG6yPoYkgpYmemSIONeyPAHKQwW_MshTlIcahkKXLru9OMXTugf2487T4DV0cA808fCaNJjnB06Cmim40P9P8p_wD6mqDV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67030205</pqid></control><display><type>article</type><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><source>ScienceDirect Freedom Collection</source><creator>Kocherginsky, Nikolai</creator><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><description>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H
+) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H
+ into the membrane. An acidic lipid, cardiolipin, binds with this H
+ and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2008.10.013</identifier><identifier>PMID: 19049812</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acids ; ATPase ; Bioenergetics ; Cardiolipin ; Enzyme Activation ; Lipids - chemistry ; Membrane ; Mitochondria ; Models, Chemical ; Models, Molecular ; Molecular motor ; Nobel Prize ; Oxidation-Reduction ; Oxidative phosphorylation ; Phosphorylation ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - ultrastructure</subject><ispartof>Progress in biophysics and molecular biology, 2009, Vol.99 (1), p.20-41</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</citedby><cites>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19049812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H
+) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H
+ into the membrane. An acidic lipid, cardiolipin, binds with this H
+ and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</description><subject>Acids</subject><subject>ATPase</subject><subject>Bioenergetics</subject><subject>Cardiolipin</subject><subject>Enzyme Activation</subject><subject>Lipids - chemistry</subject><subject>Membrane</subject><subject>Mitochondria</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular motor</subject><subject>Nobel Prize</subject><subject>Oxidation-Reduction</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - ultrastructure</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERZfCKyCf4AAJY7sbJ8dtBRSpLXsoZ8uxJ9pZJXGws4XlHfrOeLUr9chhPJqZbzz2_IxxAaUAUX3ellNLYQh9PksJUOd0CUK9YAtRa1UIreRLtgDQTVEJ0OfsdUpbAJBCV6_YuWjgsqmFXLCnlSNPjvc0kU-f-A3_WKwe1jZhDuzo-YBuY0dKAw8dD3_I25kekU-bkLLFfZ_jMJZ8vdkncqFwGxzI2Z6TR5u4Ar5HGxO33YyRr0t-R3Nm-v5D4vehxZ6vI_1Fbn_b6N-ws872Cd-e_AX7-fXLw_VNcfvj2_fr1W3hLqWcC_Qol03TWinAgdKoMad0A6IV6GqlKqxk66FDlDVK3-hl27WN7RQoJ5ZOXbD3x3unGH7tMM1moOTyo-yIYZdMpUGBhGUG6yPoYkgpYmemSIONeyPAHKQwW_MshTlIcahkKXLru9OMXTugf2487T4DV0cA808fCaNJjnB06Cmim40P9P8p_wD6mqDV</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Kocherginsky, Nikolai</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><author>Kocherginsky, Nikolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acids</topic><topic>ATPase</topic><topic>Bioenergetics</topic><topic>Cardiolipin</topic><topic>Enzyme Activation</topic><topic>Lipids - chemistry</topic><topic>Membrane</topic><topic>Mitochondria</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular motor</topic><topic>Nobel Prize</topic><topic>Oxidation-Reduction</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocherginsky, Nikolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2009</date><risdate>2009</risdate><volume>99</volume><issue>1</issue><spage>20</spage><epage>41</epage><pages>20-41</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H
+) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H
+ into the membrane. An acidic lipid, cardiolipin, binds with this H
+ and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19049812</pmid><doi>10.1016/j.pbiomolbio.2008.10.013</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2009, Vol.99 (1), p.20-41 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_proquest_miscellaneous_67030205 |
source | ScienceDirect Freedom Collection |
subjects | Acids ATPase Bioenergetics Cardiolipin Enzyme Activation Lipids - chemistry Membrane Mitochondria Models, Chemical Models, Molecular Molecular motor Nobel Prize Oxidation-Reduction Oxidative phosphorylation Phosphorylation Proton-Translocating ATPases - chemistry Proton-Translocating ATPases - ultrastructure |
title | Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidic%20lipids,%20H%20+-ATPases,%20and%20mechanism%20of%20oxidative%20phosphorylation.%20Physico-chemical%20ideas%2030%20years%20after%20P.%20Mitchell's%20Nobel%20Prize%20award&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Kocherginsky,%20Nikolai&rft.date=2009&rft.volume=99&rft.issue=1&rft.spage=20&rft.epage=41&rft.pages=20-41&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2008.10.013&rft_dat=%3Cproquest_cross%3E67030205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67030205&rft_id=info:pmid/19049812&rfr_iscdi=true |