Loading…

Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award

Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of...

Full description

Saved in:
Bibliographic Details
Published in:Progress in biophysics and molecular biology 2009, Vol.99 (1), p.20-41
Main Author: Kocherginsky, Nikolai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3
cites cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3
container_end_page 41
container_issue 1
container_start_page 20
container_title Progress in biophysics and molecular biology
container_volume 99
creator Kocherginsky, Nikolai
description Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H +) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H + into the membrane. An acidic lipid, cardiolipin, binds with this H + and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.
doi_str_mv 10.1016/j.pbiomolbio.2008.10.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67030205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610708000680</els_id><sourcerecordid>67030205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERZfCKyCf4AAJY7sbJ8dtBRSpLXsoZ8uxJ9pZJXGws4XlHfrOeLUr9chhPJqZbzz2_IxxAaUAUX3ellNLYQh9PksJUOd0CUK9YAtRa1UIreRLtgDQTVEJ0OfsdUpbAJBCV6_YuWjgsqmFXLCnlSNPjvc0kU-f-A3_WKwe1jZhDuzo-YBuY0dKAw8dD3_I25kekU-bkLLFfZ_jMJZ8vdkncqFwGxzI2Z6TR5u4Ar5HGxO33YyRr0t-R3Nm-v5D4vehxZ6vI_1Fbn_b6N-ws872Cd-e_AX7-fXLw_VNcfvj2_fr1W3hLqWcC_Qol03TWinAgdKoMad0A6IV6GqlKqxk66FDlDVK3-hl27WN7RQoJ5ZOXbD3x3unGH7tMM1moOTyo-yIYZdMpUGBhGUG6yPoYkgpYmemSIONeyPAHKQwW_MshTlIcahkKXLru9OMXTugf2487T4DV0cA808fCaNJjnB06Cmim40P9P8p_wD6mqDV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67030205</pqid></control><display><type>article</type><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><source>ScienceDirect Freedom Collection</source><creator>Kocherginsky, Nikolai</creator><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><description>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H +) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H + into the membrane. An acidic lipid, cardiolipin, binds with this H + and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2008.10.013</identifier><identifier>PMID: 19049812</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acids ; ATPase ; Bioenergetics ; Cardiolipin ; Enzyme Activation ; Lipids - chemistry ; Membrane ; Mitochondria ; Models, Chemical ; Models, Molecular ; Molecular motor ; Nobel Prize ; Oxidation-Reduction ; Oxidative phosphorylation ; Phosphorylation ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - ultrastructure</subject><ispartof>Progress in biophysics and molecular biology, 2009, Vol.99 (1), p.20-41</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</citedby><cites>FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19049812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H +) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H + into the membrane. An acidic lipid, cardiolipin, binds with this H + and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</description><subject>Acids</subject><subject>ATPase</subject><subject>Bioenergetics</subject><subject>Cardiolipin</subject><subject>Enzyme Activation</subject><subject>Lipids - chemistry</subject><subject>Membrane</subject><subject>Mitochondria</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular motor</subject><subject>Nobel Prize</subject><subject>Oxidation-Reduction</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - ultrastructure</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERZfCKyCf4AAJY7sbJ8dtBRSpLXsoZ8uxJ9pZJXGws4XlHfrOeLUr9chhPJqZbzz2_IxxAaUAUX3ellNLYQh9PksJUOd0CUK9YAtRa1UIreRLtgDQTVEJ0OfsdUpbAJBCV6_YuWjgsqmFXLCnlSNPjvc0kU-f-A3_WKwe1jZhDuzo-YBuY0dKAw8dD3_I25kekU-bkLLFfZ_jMJZ8vdkncqFwGxzI2Z6TR5u4Ar5HGxO33YyRr0t-R3Nm-v5D4vehxZ6vI_1Fbn_b6N-ws872Cd-e_AX7-fXLw_VNcfvj2_fr1W3hLqWcC_Qol03TWinAgdKoMad0A6IV6GqlKqxk66FDlDVK3-hl27WN7RQoJ5ZOXbD3x3unGH7tMM1moOTyo-yIYZdMpUGBhGUG6yPoYkgpYmemSIONeyPAHKQwW_MshTlIcahkKXLru9OMXTugf2487T4DV0cA808fCaNJjnB06Cmim40P9P8p_wD6mqDV</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Kocherginsky, Nikolai</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</title><author>Kocherginsky, Nikolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acids</topic><topic>ATPase</topic><topic>Bioenergetics</topic><topic>Cardiolipin</topic><topic>Enzyme Activation</topic><topic>Lipids - chemistry</topic><topic>Membrane</topic><topic>Mitochondria</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular motor</topic><topic>Nobel Prize</topic><topic>Oxidation-Reduction</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kocherginsky, Nikolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kocherginsky, Nikolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2009</date><risdate>2009</risdate><volume>99</volume><issue>1</issue><spage>20</spage><epage>41</epage><pages>20-41</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H +) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H + into the membrane. An acidic lipid, cardiolipin, binds with this H + and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19049812</pmid><doi>10.1016/j.pbiomolbio.2008.10.013</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2009, Vol.99 (1), p.20-41
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_67030205
source ScienceDirect Freedom Collection
subjects Acids
ATPase
Bioenergetics
Cardiolipin
Enzyme Activation
Lipids - chemistry
Membrane
Mitochondria
Models, Chemical
Models, Molecular
Molecular motor
Nobel Prize
Oxidation-Reduction
Oxidative phosphorylation
Phosphorylation
Proton-Translocating ATPases - chemistry
Proton-Translocating ATPases - ultrastructure
title Acidic lipids, H +-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidic%20lipids,%20H%20+-ATPases,%20and%20mechanism%20of%20oxidative%20phosphorylation.%20Physico-chemical%20ideas%2030%20years%20after%20P.%20Mitchell's%20Nobel%20Prize%20award&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Kocherginsky,%20Nikolai&rft.date=2009&rft.volume=99&rft.issue=1&rft.spage=20&rft.epage=41&rft.pages=20-41&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2008.10.013&rft_dat=%3Cproquest_cross%3E67030205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-ede2599ba210c037e7eede7901b1ec8336e62bd0fee28e2d975bfb9af303c15c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67030205&rft_id=info:pmid/19049812&rfr_iscdi=true