Loading…
The HevCaLP Protein Mediates Binding Specificity of the Cry1A Class of Bacillus thuringiensis Toxins in Heliothis virescens
Retrotransposon-mediated disruption of the BtR-4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to high levels of resistance in the YHD2 strain to Cry1Ac toxin from Bacillus thuringiensis. This suggests that HevCaLP functions as a Cry1Ac toxin receptor on the surface...
Saved in:
Published in: | Biochemistry (Easton) 2004-11, Vol.43 (44), p.14299-14305 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Retrotransposon-mediated disruption of the BtR-4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to high levels of resistance in the YHD2 strain to Cry1Ac toxin from Bacillus thuringiensis. This suggests that HevCaLP functions as a Cry1Ac toxin receptor on the surface of midgut cells in susceptible larvae and that the BtR-4 gene disruption eliminates this protein in resistant larvae. However, Cry1Ac toxin binding to HevCaLP is yet to be reported. We used the polymerase chain reaction and immunoblotting as tools to discriminate between individual H. virescens larval midguts from susceptible (YDK) and resistant (CXC, KCBhyb, and YHD2-B) strains according to their BtR-4 gene disruption genotype and phenotype. This approach allowed us to test the correlation between BtR-4 gene disruption, lack of HevCaLP, and altered Cry1A toxin binding. Toxin-binding assays using brush border membrane vesicles revealed that a wild-type BtR-4 allele is necessary for HevCaLP production and Cry1Aa toxin binding, while most of Cry1Ab and Cry1Ac binding was independent of the BtR-4 genotype. Moreover, toxin competition experiments show that KCBhyb midguts lacking HevCaLP are more similar to midguts of the original YHD2 strain than to the current YHD2-B strain. This resolves discrepancies in published studies of Cry1A binding in YHD2 and supports our earlier suggestion that a separate genetic change occurred in YHD2 after appearance of the cadherin disruption, conferring even higher resistance in the resulting YHD2-B strain as well as a large reduction in Cry1Ab and Cry1Ac binding. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi048500i |