Loading…
Roles of surface residues of intracellular domains of heag potassium channels
Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect acti...
Saved in:
Published in: | European biophysics journal 2009-04, Vol.38 (4), p.523-532 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3 |
container_end_page | 532 |
container_issue | 4 |
container_start_page | 523 |
container_title | European biophysics journal |
container_volume | 38 |
creator | Stevens, Louisa Ju, Min Wray, Dennis |
description | Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function. |
doi_str_mv | 10.1007/s00249-009-0402-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67038784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894684411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xI8eCtOpOkTXqUxS9YEUTPIW2nu136sSbbg__erF1YEDxMBmaeefPyMnaJcIsA6s4DcJnFAKEk8FgfsSlKwWMEVMdsGt4kVonCCTvzfg0gE0R9yiaYoeI8xSl7fe8b8lFfRX5wlS0ocuTrchhndbd1YdY0Q2NdVPatrbvfxYrsMtr0W-t9PbRRsbJdR40_ZyeVbTxd7PuMfT4-fMyf48Xb08v8fhEXIs22ccIrkZdpJkkQoQQqeS5KyEpdglWK8qKQiqQgkaeFtKlGQVVVSYtppqXNxYzdjLob138Fr1vT1n7n03bUD96kCoRWWgbw-g-47gfXBW-G8wyEyhIMEI5Q4XrvHVVm4-rWum-DYHZBmzFoE4I2u6CNDjdXe-Ehb6k8XOyTDQAfAR9W3ZLc4ef_VX8Ad4KJAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229037951</pqid></control><display><type>article</type><title>Roles of surface residues of intracellular domains of heag potassium channels</title><source>Springer Nature</source><creator>Stevens, Louisa ; Ju, Min ; Wray, Dennis</creator><creatorcontrib>Stevens, Louisa ; Ju, Min ; Wray, Dennis</creatorcontrib><description>Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-009-0402-8</identifier><identifier>PMID: 19172261</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animals ; Binding Sites ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Blotting, Western ; Cell Biology ; Cellular biology ; Conserved Sequence ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli ; Ether-A-Go-Go Potassium Channels - chemistry ; Ether-A-Go-Go Potassium Channels - genetics ; Ether-A-Go-Go Potassium Channels - metabolism ; Humans ; Ions ; Kinetics ; Life Sciences ; Membrane Biology ; Membrane Potentials ; Models, Molecular ; Mutation ; Mutation, Missense ; Nanotechnology ; Neurobiology ; Original Paper ; Patch-Clamp Techniques ; Potassium ; Studies ; Time Factors ; Xenopus laevis</subject><ispartof>European biophysics journal, 2009-04, Vol.38 (4), p.523-532</ispartof><rights>European Biophysical Societies' Association 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3</citedby><cites>FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19172261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevens, Louisa</creatorcontrib><creatorcontrib>Ju, Min</creatorcontrib><creatorcontrib>Wray, Dennis</creatorcontrib><title>Roles of surface residues of intracellular domains of heag potassium channels</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><addtitle>Eur Biophys J</addtitle><description>Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Blotting, Western</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Conserved Sequence</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli</subject><subject>Ether-A-Go-Go Potassium Channels - chemistry</subject><subject>Ether-A-Go-Go Potassium Channels - genetics</subject><subject>Ether-A-Go-Go Potassium Channels - metabolism</subject><subject>Humans</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Membrane Potentials</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nanotechnology</subject><subject>Neurobiology</subject><subject>Original Paper</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Xenopus laevis</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rr6A7xI8eCtOpOkTXqUxS9YEUTPIW2nu136sSbbg__erF1YEDxMBmaeefPyMnaJcIsA6s4DcJnFAKEk8FgfsSlKwWMEVMdsGt4kVonCCTvzfg0gE0R9yiaYoeI8xSl7fe8b8lFfRX5wlS0ocuTrchhndbd1YdY0Q2NdVPatrbvfxYrsMtr0W-t9PbRRsbJdR40_ZyeVbTxd7PuMfT4-fMyf48Xb08v8fhEXIs22ccIrkZdpJkkQoQQqeS5KyEpdglWK8qKQiqQgkaeFtKlGQVVVSYtppqXNxYzdjLob138Fr1vT1n7n03bUD96kCoRWWgbw-g-47gfXBW-G8wyEyhIMEI5Q4XrvHVVm4-rWum-DYHZBmzFoE4I2u6CNDjdXe-Ehb6k8XOyTDQAfAR9W3ZLc4ef_VX8Ad4KJAw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Stevens, Louisa</creator><creator>Ju, Min</creator><creator>Wray, Dennis</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Roles of surface residues of intracellular domains of heag potassium channels</title><author>Stevens, Louisa ; Ju, Min ; Wray, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Blotting, Western</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Conserved Sequence</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli</topic><topic>Ether-A-Go-Go Potassium Channels - chemistry</topic><topic>Ether-A-Go-Go Potassium Channels - genetics</topic><topic>Ether-A-Go-Go Potassium Channels - metabolism</topic><topic>Humans</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Membrane Potentials</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nanotechnology</topic><topic>Neurobiology</topic><topic>Original Paper</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, Louisa</creatorcontrib><creatorcontrib>Ju, Min</creatorcontrib><creatorcontrib>Wray, Dennis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, Louisa</au><au>Ju, Min</au><au>Wray, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of surface residues of intracellular domains of heag potassium channels</atitle><jtitle>European biophysics journal</jtitle><stitle>Eur Biophys J</stitle><addtitle>Eur Biophys J</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>38</volume><issue>4</issue><spage>523</spage><epage>532</epage><pages>523-532</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19172261</pmid><doi>10.1007/s00249-009-0402-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7571 |
ispartof | European biophysics journal, 2009-04, Vol.38 (4), p.523-532 |
issn | 0175-7571 1432-1017 |
language | eng |
recordid | cdi_proquest_miscellaneous_67038784 |
source | Springer Nature |
subjects | Animals Binding Sites Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biophysics Blotting, Western Cell Biology Cellular biology Conserved Sequence Electrophoresis, Polyacrylamide Gel Escherichia coli Ether-A-Go-Go Potassium Channels - chemistry Ether-A-Go-Go Potassium Channels - genetics Ether-A-Go-Go Potassium Channels - metabolism Humans Ions Kinetics Life Sciences Membrane Biology Membrane Potentials Models, Molecular Mutation Mutation, Missense Nanotechnology Neurobiology Original Paper Patch-Clamp Techniques Potassium Studies Time Factors Xenopus laevis |
title | Roles of surface residues of intracellular domains of heag potassium channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20surface%20residues%20of%20intracellular%20domains%20of%20heag%20potassium%20channels&rft.jtitle=European%20biophysics%20journal&rft.au=Stevens,%20Louisa&rft.date=2009-04-01&rft.volume=38&rft.issue=4&rft.spage=523&rft.epage=532&rft.pages=523-532&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-009-0402-8&rft_dat=%3Cproquest_cross%3E1894684411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-52f3bd694e3ee140ed2b3d09d8d0a77ebcc47e43e3b6c4a6813efff4a16984ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229037951&rft_id=info:pmid/19172261&rfr_iscdi=true |