Loading…

Molecular Characterization of a Putative Sucrose:Fructan 6-Fructosyltransferase (6-SFT) of the Cold-Resistant Patagonian Grass Bromus pictus Associated With Fructan Accumulation Under Low Temperatures

Fructans are fructose polymers synthesized from sucrose in the plant vacuole. They represent short- and long-term carbohydrate reserves and have been associated with abiotic stress tolerance in graminean species. We report the isolation and characterization of a putative sucrose:fructan 6-fructosylt...

Full description

Saved in:
Bibliographic Details
Published in:Plant and cell physiology 2009-03, Vol.50 (3), p.489-503
Main Authors: del Viso, F., Puebla, A. F., Fusari, C. M., Casabuono, A. C., Couto, A. S., Pontis, H. G., Hopp, H. E., Heinz, R. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fructans are fructose polymers synthesized from sucrose in the plant vacuole. They represent short- and long-term carbohydrate reserves and have been associated with abiotic stress tolerance in graminean species. We report the isolation and characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) gene from a Patagonian grass species, Bromus pictus, tolerant to drought and cold temperatures. Structural and functional analyses of this gene were performed by Southern and Northern blot. Sugar content, quality and fructosyltransferase activity were studied using HPAEC-PAD (high-pH anion-exchange chromatography with pulsed amperometric detection), enzymatic and colorimetric assays. The putative 6-SFT gene had all the conserved motifs of fructosyl-transferase and showed 90% identity at the amino acid level with other 6-SFTs from winter cereals. Expression studies, and determination of sugar content and fructosyl-transferase activity were performed on five sections of the leaf. Bp6-SFT was expressed predominantly in leaf bases, where fructosyltransferase activity and fructan content are higher. Bp6-SFT expression and accumulation of fructans showed different patterns in the evaluated leaf sections during a 7 d time course experiment under chilling treatment. The transcriptional pattern suggests that the B. pictus 6-SFT gene is highly expressed in basal leaf sections even under control temperate conditions, in contrast to previous reports in other graminean species. Low temperatures caused an increase in Bp6-SFT expression and fructan accumulation in leaf bases. This is the first study of the isolation and molecular characterization of a fructosyltransferase in a native species from the Patagonian region. Expression in heterologous systems will confirm the functionality, allowing future developments in generation of functional markers for assisted breeding or biotechnological applications.
ISSN:0032-0781
1471-9053
DOI:10.1093/pcp/pcp008