Loading…

Hippocampal neurons and recombinant galectins as tools for systematic carbohydrate structure–function studies in neuronal differentiation

Membrane glycoconjugates play a central role in neuronal interactions and regulation. To define the precise links between membrane polysaccharides and neuronal functions, two main requirements must be fulfilled: (1) the availability of molecular tools able to finely discriminate among carbohydrate s...

Full description

Saved in:
Bibliographic Details
Published in:Brain research. Developmental brain research 2004-11, Vol.153 (2), p.189-196
Main Authors: Kopitz, Jürgen, Russwurm, Roland, Kaltner, Herbert, André, Sabine, Dotti, Carlos G., Gabius, Hans-Joachim, Abad-Rodríguez, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane glycoconjugates play a central role in neuronal interactions and regulation. To define the precise links between membrane polysaccharides and neuronal functions, two main requirements must be fulfilled: (1) the availability of molecular tools able to finely discriminate among carbohydrate structures and (2) the use of an experimental system suitable for systematic and quantitative studies of particular neuronal processes. In this work, we used two chicken proto-type galectins, i.e., monomeric CG-14 and dimeric CG-16, with very similar carbohydrate affinities, and rat hippocampal neurons in culture to quantitatively measure the involvement of carbohydrate–protein interaction in axonal growth and directionality, neurite sprouting and axon regenerative capacity after section. CG-16 potently stimulated axonal growth and guidance. Neurite sprouting was enhanced by immobilized CG-16 and, notably, reduced by lectin in solution. Overall, cross-linking CG-16 invariably excelled CG-14 in these functional assays, although none of them were able to improve axon regenerative capacity when compared to mammalian galectin-1. Our results demonstrate the potential of the experimental set-up to perform a systematic study of galectin functionality in neuronal differentiation. In view of the concept of the sugar code, the presented results indicate that biological effects triggered by glycan binding engaging an endogenous lectin can be modulated by carbohydrate affinity and/or by other factors like differential cross-linking capacity.
ISSN:0165-3806
DOI:10.1016/j.devbrainres.2004.08.005