Loading…
The one-particle Green's function method in the Dirac-Hartree-Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN
In this paper we present the third-order extension of the four-component one-particle propagator method in the non-Dyson version of the algebraic diagrammatic construction (ADC) for the calculation of valence ionization energies. Relativistic and electron correlation effects are incorporated consist...
Saved in:
Published in: | The Journal of chemical physics 2004-11, Vol.121 (18), p.8782-8791 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present the third-order extension of the four-component one-particle propagator method in the non-Dyson version of the algebraic diagrammatic construction (ADC) for the calculation of valence ionization energies. Relativistic and electron correlation effects are incorporated consistently by starting from the Dirac-Hamiltonian. The ADC equations derived from the Feynman diagrams can hereby be used in their spin-orbital form and need not be transformed to the spin-free version as required for a nonrelativistic treatment. For the calculation of the constant self-energy contribution the Dyson expansion method was implemented being superior to a perturbational treatment of sigma(infinity). The Dirac-Hartree-Fock- (DHF-) ADC(3) was applied to the calculation of valence photoionization spectra of the noble gas atoms, carbon monoxide and ICN now also reproducing spin-orbit features in the spectrum. Comparison with DHF-ADC(2), nonrelativistic ADC(3), and experimental data was made in order to demonstrate the characteristics and performance of the method. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1802792 |