Loading…

Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion

A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si−H) surface. Well-defined functional polymer−Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monometha...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2004-11, Vol.5 (6), p.2392-2403
Main Authors: Xu, F. J, Zhong, S. P, Yung, L. Y. L, Kang, E. T, Neoh, K. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663
cites cdi_FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663
container_end_page 2403
container_issue 6
container_start_page 2392
container_title Biomacromolecules
container_volume 5
creator Xu, F. J
Zhong, S. P
Yung, L. Y. L
Kang, E. T
Neoh, K. G
description A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si−H) surface. Well-defined functional polymer−Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm−PEGMA copolymers and block copolymers on Si−H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a “controlled” process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 °C [above the lower critical solution temperature (LCST, ∼32 °C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The “active” chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.
doi_str_mv 10.1021/bm049675a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67047566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67047566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663</originalsourceid><addsrcrecordid>eNptkU1O5DAQhS00CBhgwQWQN4PoRcBOYnuybLX4k5BAdO-jSlwWRknc2A5ScwLWrOZ8c5Ix0MBmVlWq-vSq9B4hB5ydcJbz06ZnZSWVgA2yw0Uus1Ky_Md7LzKlKrVNfobwwBirilJskW0uRMGYkDvkz3z0BlrMpm20T0hh0HQebT92NrvDsHRDeBvfum7Vo__78jq3x5yxCb1cNd7qQI13Pf0UuRpstBBR02lM44WHIRj09A60baH7lLHPEK0bqHGeztwQveuoM3SGXUen-h5DWu6RTQNdwP113SWL87PF7DK7vrm4mk2vMyhKHrOyUVWOuSlR6CqvKikEN_hbF5oZDo0GY5RGo6ApwCiudVHqQgqTo9RSymKXHH3ILr17HDHEurehTY_AgG4MtVSsVOIdnHyArXcheDT10tse_KrmrH5Lof5KIbGHa9Gx6VF_k2vbE_BrDUBIvpjkU2vDNyfzlFqCvzhoQ_3gRj8kK_5z8B87n56r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67047566</pqid></control><display><type>article</type><title>Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, F. J ; Zhong, S. P ; Yung, L. Y. L ; Kang, E. T ; Neoh, K. G</creator><creatorcontrib>Xu, F. J ; Zhong, S. P ; Yung, L. Y. L ; Kang, E. T ; Neoh, K. G</creatorcontrib><description>A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si−H) surface. Well-defined functional polymer−Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm−PEGMA copolymers and block copolymers on Si−H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a “controlled” process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 °C [above the lower critical solution temperature (LCST, ∼32 °C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The “active” chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm049675a</identifier><identifier>PMID: 15530056</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>3T3 Cells ; Acrylamides - chemistry ; Acrylates - chemistry ; Animals ; Applied sciences ; Biocompatible Materials - chemistry ; Biophysics - methods ; Cell Adhesion ; Cells, Cultured ; Exact sciences and technology ; Fibroblasts - metabolism ; Hydrogen - chemistry ; Mice ; Microscopy, Atomic Force ; Models, Chemical ; Organic polymers ; Physicochemistry of polymers ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Polymers with particular structures ; Polymethacrylic Acids - chemistry ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Protein Binding ; Silicon - chemistry ; Surface Properties ; Surface-Active Agents - chemistry ; Temperature ; Time Factors ; Ultraviolet Rays ; Water - chemistry</subject><ispartof>Biomacromolecules, 2004-11, Vol.5 (6), p.2392-2403</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663</citedby><cites>FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16277955$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15530056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, F. J</creatorcontrib><creatorcontrib>Zhong, S. P</creatorcontrib><creatorcontrib>Yung, L. Y. L</creatorcontrib><creatorcontrib>Kang, E. T</creatorcontrib><creatorcontrib>Neoh, K. G</creatorcontrib><title>Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si−H) surface. Well-defined functional polymer−Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm−PEGMA copolymers and block copolymers on Si−H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a “controlled” process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 °C [above the lower critical solution temperature (LCST, ∼32 °C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The “active” chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.</description><subject>3T3 Cells</subject><subject>Acrylamides - chemistry</subject><subject>Acrylates - chemistry</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biophysics - methods</subject><subject>Cell Adhesion</subject><subject>Cells, Cultured</subject><subject>Exact sciences and technology</subject><subject>Fibroblasts - metabolism</subject><subject>Hydrogen - chemistry</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Chemical</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polymers with particular structures</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Protein Binding</subject><subject>Silicon - chemistry</subject><subject>Surface Properties</subject><subject>Surface-Active Agents - chemistry</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><subject>Water - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkU1O5DAQhS00CBhgwQWQN4PoRcBOYnuybLX4k5BAdO-jSlwWRknc2A5ScwLWrOZ8c5Ix0MBmVlWq-vSq9B4hB5ydcJbz06ZnZSWVgA2yw0Uus1Ky_Md7LzKlKrVNfobwwBirilJskW0uRMGYkDvkz3z0BlrMpm20T0hh0HQebT92NrvDsHRDeBvfum7Vo__78jq3x5yxCb1cNd7qQI13Pf0UuRpstBBR02lM44WHIRj09A60baH7lLHPEK0bqHGeztwQveuoM3SGXUen-h5DWu6RTQNdwP113SWL87PF7DK7vrm4mk2vMyhKHrOyUVWOuSlR6CqvKikEN_hbF5oZDo0GY5RGo6ApwCiudVHqQgqTo9RSymKXHH3ILr17HDHEurehTY_AgG4MtVSsVOIdnHyArXcheDT10tse_KrmrH5Lof5KIbGHa9Gx6VF_k2vbE_BrDUBIvpjkU2vDNyfzlFqCvzhoQ_3gRj8kK_5z8B87n56r</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Xu, F. J</creator><creator>Zhong, S. P</creator><creator>Yung, L. Y. L</creator><creator>Kang, E. T</creator><creator>Neoh, K. G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion</title><author>Xu, F. J ; Zhong, S. P ; Yung, L. Y. L ; Kang, E. T ; Neoh, K. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>3T3 Cells</topic><topic>Acrylamides - chemistry</topic><topic>Acrylates - chemistry</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biophysics - methods</topic><topic>Cell Adhesion</topic><topic>Cells, Cultured</topic><topic>Exact sciences and technology</topic><topic>Fibroblasts - metabolism</topic><topic>Hydrogen - chemistry</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Chemical</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polymers with particular structures</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Protein Binding</topic><topic>Silicon - chemistry</topic><topic>Surface Properties</topic><topic>Surface-Active Agents - chemistry</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, F. J</creatorcontrib><creatorcontrib>Zhong, S. P</creatorcontrib><creatorcontrib>Yung, L. Y. L</creatorcontrib><creatorcontrib>Kang, E. T</creatorcontrib><creatorcontrib>Neoh, K. G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, F. J</au><au>Zhong, S. P</au><au>Yung, L. Y. L</au><au>Kang, E. T</au><au>Neoh, K. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>5</volume><issue>6</issue><spage>2392</spage><epage>2403</epage><pages>2392-2403</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>A simple two-step method was developed for the covalent immobilization of atom-transfer radical polymerization (ATRP) initiators on the hydrogen-terminated Si(100) (Si−H) surface. Well-defined functional polymer−Si hybrids, consisting of covalently tethered brushes of poly(ethylene glycol) monomethacrylate (PEGMA) polymer, N-isopropylacrylamide (NIPAAm) polymer, and NIPAAm−PEGMA copolymers and block copolymers on Si−H surfaces, were prepared via surface-initiated ATRP. Kinetics study revealed that the chain growth from the silicon surface was consistent with a “controlled” process. Surface cultures of the cell line 3T3-Swiss albino on the hybrids were evaluated. The PEGMA graft-polymerized silicon [Si-g-P(PEGMA)] surface is very effective in preventing cell attachment and growth. At 37 °C [above the lower critical solution temperature (LCST, ∼32 °C) of NIPAAm], the seeded cells adhered, spread, and proliferated on the NIPAAm graft polymerized silicon [Si-g-P(NIPAAm)] surface. Below the LCST, the cells detached from the Si-g-P(NIPAAm) surface spontaneously. Incorporation of PEGMA units into the NIPAAm chains of the Si-g-P(NIPAAm) surface via copolymerization resulted in more rapid cell detachment during the temperature transition. The “active” chain ends on the Si-g-P(PEGMA) and Si-g-P(NIPAAm) hybrids were also used as the macroinitiators for the synthesis of diblock copolymer brushes. Thus, not only are the hybrids potentially useful as stimuli-responsive adhesion modifiers for cells in silicon-based biomedical microdevices but also the active chain ends on the hybrid surfaces offer opportunities for further surface functionalization and molecular design.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15530056</pmid><doi>10.1021/bm049675a</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2004-11, Vol.5 (6), p.2392-2403
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_67047566
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 3T3 Cells
Acrylamides - chemistry
Acrylates - chemistry
Animals
Applied sciences
Biocompatible Materials - chemistry
Biophysics - methods
Cell Adhesion
Cells, Cultured
Exact sciences and technology
Fibroblasts - metabolism
Hydrogen - chemistry
Mice
Microscopy, Atomic Force
Models, Chemical
Organic polymers
Physicochemistry of polymers
Polyethylene Glycols - chemistry
Polymers - chemistry
Polymers with particular structures
Polymethacrylic Acids - chemistry
Preparation, kinetics, thermodynamics, mechanism and catalysts
Protein Binding
Silicon - chemistry
Surface Properties
Surface-Active Agents - chemistry
Temperature
Time Factors
Ultraviolet Rays
Water - chemistry
title Surface-Active and Stimuli-Responsive Polymer−Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Active%20and%20Stimuli-Responsive%20Polymer%E2%88%92Si(100)%20Hybrids%20from%20Surface-Initiated%20Atom%20Transfer%20Radical%20Polymerization%20for%20Control%20of%20Cell%20Adhesion&rft.jtitle=Biomacromolecules&rft.au=Xu,%20F.%20J&rft.date=2004-11-01&rft.volume=5&rft.issue=6&rft.spage=2392&rft.epage=2403&rft.pages=2392-2403&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm049675a&rft_dat=%3Cproquest_cross%3E67047566%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a341t-4b792e2f4e5d92996551fe8d3d0f1abdaff7def7ab3af71dd34d365f2e6d6663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67047566&rft_id=info:pmid/15530056&rfr_iscdi=true