Loading…

Differentiation potential of bone marrow mesenchymal stem cells in duck

The bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into mesenchymal cells in vitro. In this study, MSCs in duck were isolated from bone marrow by density gradient centrifuge separation, purified and expanded in the me- dium. The primary MSCs were expande...

Full description

Saved in:
Bibliographic Details
Published in:Journal of genetics and genomics 2009-03, Vol.36 (3), p.133-140
Main Authors: Li, Linfeng, Bai, Xiujuan, Gong, Xuelian, Liu, Hongkun, Chen, Lina, Guan, Weijun, Ma, Yuehui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into mesenchymal cells in vitro. In this study, MSCs in duck were isolated from bone marrow by density gradient centrifuge separation, purified and expanded in the me- dium. The primary MSCs were expanded for 11 passages. The different-passage MSCs were induced to differentiate into osteoblasts and neuron-like cells. Karyotype analysis indicated that MSCs kept diploid condition and the hereditary feature was stable. The different- passage MSCs expressed CD44, ICAM-1 and SSEA-4, but not CD34, CD45 and SSEA-1 when detected by immunofluorescence staining There was no significant difference among the positive rates of passages 2, 6 and 8 (P 〉 0.05), but a significant difference existed among those of passages 2, 6, 8 and 11 (P 〈 0.05). After the osteogenic inducement was added, the induced different-passage MSCs expressed high-level alkaline phosphatase (ALP), and are positive for tetracycline staining, Alizarin Red staining and Von Kossa staining. After the neural inducement was added, about 70% cells exhibited typical neuron-like phenotype, the induced different-passage MSCs expressed Nestin, neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) when detected by immunofluorescence staining. There was no significant difference among the positive rates of passages 3, 4 and 6 (P〉0.05), but a significant difference existed among those of passages 3, 4, 6 and 8 (P〈0.05). These results suggest that MSCs in duck were capable of differentiating into osteoblasts and neuron-like cells in vitro.
ISSN:1673-8527
DOI:10.1016/S1673-8527(08)60100-9