Loading…

Regulation of Embryonic Stem Cell Self-renewal by Phosphoinositide 3-Kinase-dependent Signaling

The maintenance of murine embryonic stem (ES) cell self-renewal is regulated by leukemia inhibitory factor (LIF)-dependent activation of signal transducer and activator of transcription 3 (STAT3) and LIF-independent mechanisms including Nanog, BMP2/4, and Wnt signaling. Here we demonstrate a previou...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-11, Vol.279 (46), p.48063-48070
Main Authors: Paling, Nicholas R D, Wheadon, Helen, Bone, Heather K, Welham, Melanie J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The maintenance of murine embryonic stem (ES) cell self-renewal is regulated by leukemia inhibitory factor (LIF)-dependent activation of signal transducer and activator of transcription 3 (STAT3) and LIF-independent mechanisms including Nanog, BMP2/4, and Wnt signaling. Here we demonstrate a previously undescribed role for phosphoinositide 3-kinases (PI3Ks) in regulation of murine ES cell self-renewal. Treatment with the reversible PI3K inhibitor, LY294002, or more specific inhibition of class I A PI3K via regulated expression of dominant negative Δp85, led to a reduction in the ability of LIF to maintain self-renewal, with cells concomitantly adopting a differentiated morphology. Inhibition of PI3Ks reduced basal and LIF-stimulated phosphorylation of PKB/Akt, GSK3α/β, and S6 proteins. Importantly, LY294002 and Δp85 expression had no effect on LIF-induced phosphorylation of STAT3 at Tyr 705 , but did augment LIF-induced phosphorylation of ERKs in both short and long term incubations. Subsequently, we demonstrate that inhibition of MAP-Erk kinases (MEKs) reverses the effects of PI3K inhibition on self-renewal in a time- and dose-dependent manner, suggesting that the elevated ERK activity observed upon PI3K inhibition contributes to the functional response we observe. Surprisingly, upon long term inhibition of PI3Ks we observed a reduction in phosphorylation of β-catenin, the target of GSK-3 action in the canonical Wnt pathway, although no consistent alterations in cytosolic levels of β-catenin were observed, indicating this pathway is not playing a major role downstream of PI3Ks. Our studies support a role for PI3Ks in regulation of self-renewal and increase our understanding of the molecular signaling components involved in regulation of stem cell fate.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M406467200