Loading…
Analysis and performance of the control systems of the NASA 70-meter antennas
The control systems of the NASA 70-m antennas include the antenna control system, the Master Equatorial (ME) control system, and their combinations (called modes). The Master Equatorial is a small telescope mounted on the top of a tower located inside the antenna structure. In the Antenna Encoder mo...
Saved in:
Published in: | ISA transactions 2004-10, Vol.43 (4), p.597-610 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The control systems of the NASA 70-m antennas include the antenna control system, the Master Equatorial (ME) control system, and their combinations (called modes). The Master Equatorial is a small telescope mounted on the top of a tower located inside the antenna structure. In the Antenna Encoder mode antenna encoders are used to close the feedback loop. In the Autocollimator mode the Master Equatorial is a master that follows a target, and the antenna is a slave that follows the Master Equatorial. In the Master Equatorial Encoder mode the “master-slave” relationship is reversed. In the paper the analysis begins with the description of the open-loop models of the antenna and of the Master Equatorial. We obtained the models by using field test data and system identification techniques. Next, we analyzed and evaluated the performance of the three modes of the antenna control system. The analysis showed that the Autocollimator and Master Equatorial Encoder tracking modes are feasible for high-rate tracking, and that the latter mode has the smallest tracking error. Finally, we analyzed the switching between antenna modes, necessary while tracking near the keyhold. We showed that switching causes jerks of magnitudes within the acceptable threshold. The contribution of this paper includes the development of the antenna model using field data and system identification procedures, the development of the LQG control algorithm for the 70-meter antenna, the development of two control cooperating systems (antenna and ME), identifying the more appropriate, and analyzing of switching between the two control systems. |
---|---|
ISSN: | 0019-0578 1879-2022 |
DOI: | 10.1016/S0019-0578(07)60171-2 |