Loading…
Three-Dimensional Trace Element Analysis by Confocal X-ray Microfluorescence Imaging
A three-dimensional (3D) variant of scanning micro X-ray fluorescence (XRF) is described and evaluated at the ID18F instrument of the European Synchrotron Radiation Facility (ESRF). The method is based on confocal excitation/detection using a polycapillary half-lens in front of the energy-dispersive...
Saved in:
Published in: | Analytical chemistry (Washington) 2004-11, Vol.76 (22), p.6786-6791 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A three-dimensional (3D) variant of scanning micro X-ray fluorescence (XRF) is described and evaluated at the ID18F instrument of the European Synchrotron Radiation Facility (ESRF). The method is based on confocal excitation/detection using a polycapillary half-lens in front of the energy-dispersive detector. The experimental arrangement represents a significant generalization of regular two-dimensional (2D) scanning micro-XRF and employs a detector half-lens whose focus coincides with that of the focused incoming beam. The detection volume defined by the intersection of the exciting beam and the energy-dependent acceptance of the polycapillary optics is 100−350 μm3. Minimum detection limits are sub-ppm, and sensitivities are comparable with regular scanning XRF. Next to the reduction of in-sample single/multiple scattering, the setup provides the possibility of sample depth scans with an energy-dependent resolution of 10−35 μm in the energy range of 3−23 keV and the possibility of performing 3D-XRF analysis by simple XYZ linear scanning. This provides a suitable alternative to X-ray fluorescence tomography. The method is illustrated with results of the analysis of solid inclusions in diamond and fluid inclusions in quartz. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac049274l |