Loading…

Discrete synaptic states define a major mechanism of synapse plasticity

Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechani...

Full description

Saved in:
Bibliographic Details
Published in:Trends in neurosciences (Regular ed.) 2004-12, Vol.27 (12), p.744-750
Main Authors: Montgomery, Johanna M., Madison, Daniel V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synapses can change their strength in response to afferent activity, a property that might underlie a variety of neural processes such as learning, network synaptic weighting, synapse formation and pruning. Recent work has shown that synapses change their strength by jumping between discrete mechanistic states, rather than by simply moving up and down in a continuum of efficacy. Coincident with this, studies have provided a framework for understanding the potential mechanistic underpinnings of synaptic plastic states. Synaptic plasticity states not only represent a new and fundamental property of CNS synapses, but also can provide a context for understanding outstanding issues in synaptic function, plasticity and development.
ISSN:0166-2236
1878-108X
DOI:10.1016/j.tins.2004.10.006