Loading…
Independent Regulation of Synaptic Size and Activity by the Anaphase-Promoting Complex
Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, b...
Saved in:
Published in: | Cell 2004-11, Vol.119 (5), p.707-718 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-α; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor. |
---|---|
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/j.cell.2004.11.028 |