Loading…
Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements
A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (ave...
Saved in:
Published in: | IEEE transactions on medical imaging 2009-04, Vol.28 (4), p.564-570 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183 |
container_end_page | 570 |
container_issue | 4 |
container_start_page | 564 |
container_title | IEEE transactions on medical imaging |
container_volume | 28 |
creator | Ozkan, K.O. Gencer, N.G. |
description | A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other. |
doi_str_mv | 10.1109/TMI.2008.2007361 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67098587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663862</ieee_id><sourcerecordid>1352293207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</originalsourceid><addsrcrecordid>eNqFkc1r1EAYhwdR7LZ6FwQJPRQvqe_MZL681cXWhV0EXcFbmEzeLFOSTM0klT34vztxlxY86GU-n98DLz9CXlG4pBTMu-1mdckA9LwoLukTsqBC6JyJ4vtTsgCmdA4g2Qk5jfEWgBYCzHNyQg1TzJhiQX6tw8_8esAfE_Zun23srsfRu-zrVMVpaKzDbNXZne9377Mv6EIfx2FyY7pny9DX8_Hej_s_EMYsNNkHH9qw88622dbHOKXXe28fzRu0yYwd9mN8QZ41to348rifkW_XH7fLT_n6881qebXOXQF6zLlURrnGWaqdUVVFazQomawAm4rbgtVSSc1EwmrGAZVB1KypHGvMHOJn5OLgvRtCmjSOZeejw7a1PYYpllKB0UKr_4IMBAhOeQLf_hOkXDBmOIPZef4XehumoU_zllqoInFy9sEBckOIccCmvBt8Z4d9SaGcuy5T1-XcdXnsOkXeHL1T1WH9GDiWm4DXB8Aj4sN3ISXXkvHfXdKuiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857452263</pqid></control><display><type>article</type><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ozkan, K.O. ; Gencer, N.G.</creator><creatorcontrib>Ozkan, K.O. ; Gencer, N.G.</creatorcontrib><description>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2008.2007361</identifier><identifier>PMID: 19272994</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Biological tissues ; Conductivity measurement ; Conductivity measurements ; Current measurement ; Data acquisition ; Data acquisition systems ; Electric Impedance ; electrical impedance imaging ; Electromagnetic Fields ; Electromagnetism ; Hirudinea ; Image reconstruction ; Imaging phantoms ; Imaging, Three-Dimensional - methods ; Leeches - anatomy & histology ; Magnetic field measurement ; magnetic induction imaging ; Magnetic separation ; Magnetic variables measurement ; medical imaging ; Phantoms, Imaging ; Resistors ; Sensitivity and Specificity ; Studies</subject><ispartof>IEEE transactions on medical imaging, 2009-04, Vol.28 (4), p.564-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</citedby><cites>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19272994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozkan, K.O.</creatorcontrib><creatorcontrib>Gencer, N.G.</creatorcontrib><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological tissues</subject><subject>Conductivity measurement</subject><subject>Conductivity measurements</subject><subject>Current measurement</subject><subject>Data acquisition</subject><subject>Data acquisition systems</subject><subject>Electric Impedance</subject><subject>electrical impedance imaging</subject><subject>Electromagnetic Fields</subject><subject>Electromagnetism</subject><subject>Hirudinea</subject><subject>Image reconstruction</subject><subject>Imaging phantoms</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Leeches - anatomy & histology</subject><subject>Magnetic field measurement</subject><subject>magnetic induction imaging</subject><subject>Magnetic separation</subject><subject>Magnetic variables measurement</subject><subject>medical imaging</subject><subject>Phantoms, Imaging</subject><subject>Resistors</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r1EAYhwdR7LZ6FwQJPRQvqe_MZL681cXWhV0EXcFbmEzeLFOSTM0klT34vztxlxY86GU-n98DLz9CXlG4pBTMu-1mdckA9LwoLukTsqBC6JyJ4vtTsgCmdA4g2Qk5jfEWgBYCzHNyQg1TzJhiQX6tw8_8esAfE_Zun23srsfRu-zrVMVpaKzDbNXZne9377Mv6EIfx2FyY7pny9DX8_Hej_s_EMYsNNkHH9qw88622dbHOKXXe28fzRu0yYwd9mN8QZ41to348rifkW_XH7fLT_n6881qebXOXQF6zLlURrnGWaqdUVVFazQomawAm4rbgtVSSc1EwmrGAZVB1KypHGvMHOJn5OLgvRtCmjSOZeejw7a1PYYpllKB0UKr_4IMBAhOeQLf_hOkXDBmOIPZef4XehumoU_zllqoInFy9sEBckOIccCmvBt8Z4d9SaGcuy5T1-XcdXnsOkXeHL1T1WH9GDiWm4DXB8Aj4sN3ISXXkvHfXdKuiw</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Ozkan, K.O.</creator><creator>Gencer, N.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200904</creationdate><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><author>Ozkan, K.O. ; Gencer, N.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological tissues</topic><topic>Conductivity measurement</topic><topic>Conductivity measurements</topic><topic>Current measurement</topic><topic>Data acquisition</topic><topic>Data acquisition systems</topic><topic>Electric Impedance</topic><topic>electrical impedance imaging</topic><topic>Electromagnetic Fields</topic><topic>Electromagnetism</topic><topic>Hirudinea</topic><topic>Image reconstruction</topic><topic>Imaging phantoms</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Leeches - anatomy & histology</topic><topic>Magnetic field measurement</topic><topic>magnetic induction imaging</topic><topic>Magnetic separation</topic><topic>Magnetic variables measurement</topic><topic>medical imaging</topic><topic>Phantoms, Imaging</topic><topic>Resistors</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozkan, K.O.</creatorcontrib><creatorcontrib>Gencer, N.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozkan, K.O.</au><au>Gencer, N.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2009-04</date><risdate>2009</risdate><volume>28</volume><issue>4</issue><spage>564</spage><epage>570</epage><pages>564-570</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19272994</pmid><doi>10.1109/TMI.2008.2007361</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2009-04, Vol.28 (4), p.564-570 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_67098587 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Animals Biological tissues Conductivity measurement Conductivity measurements Current measurement Data acquisition Data acquisition systems Electric Impedance electrical impedance imaging Electromagnetic Fields Electromagnetism Hirudinea Image reconstruction Imaging phantoms Imaging, Three-Dimensional - methods Leeches - anatomy & histology Magnetic field measurement magnetic induction imaging Magnetic separation Magnetic variables measurement medical imaging Phantoms, Imaging Resistors Sensitivity and Specificity Studies |
title | Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Frequency%20Magnetic%20Subsurface%20Imaging:%20Reconstructing%20Conductivity%20Images%20of%20Biological%20Tissues%20via%20Magnetic%20Measurements&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ozkan,%20K.O.&rft.date=2009-04&rft.volume=28&rft.issue=4&rft.spage=564&rft.epage=570&rft.pages=564-570&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2008.2007361&rft_dat=%3Cproquest_pubme%3E1352293207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857452263&rft_id=info:pmid/19272994&rft_ieee_id=4663862&rfr_iscdi=true |