Loading…

Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements

A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (ave...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2009-04, Vol.28 (4), p.564-570
Main Authors: Ozkan, K.O., Gencer, N.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183
cites cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183
container_end_page 570
container_issue 4
container_start_page 564
container_title IEEE transactions on medical imaging
container_volume 28
creator Ozkan, K.O.
Gencer, N.G.
description A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.
doi_str_mv 10.1109/TMI.2008.2007361
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67098587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663862</ieee_id><sourcerecordid>1352293207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</originalsourceid><addsrcrecordid>eNqFkc1r1EAYhwdR7LZ6FwQJPRQvqe_MZL681cXWhV0EXcFbmEzeLFOSTM0klT34vztxlxY86GU-n98DLz9CXlG4pBTMu-1mdckA9LwoLukTsqBC6JyJ4vtTsgCmdA4g2Qk5jfEWgBYCzHNyQg1TzJhiQX6tw8_8esAfE_Zun23srsfRu-zrVMVpaKzDbNXZne9377Mv6EIfx2FyY7pny9DX8_Hej_s_EMYsNNkHH9qw88622dbHOKXXe28fzRu0yYwd9mN8QZ41to348rifkW_XH7fLT_n6881qebXOXQF6zLlURrnGWaqdUVVFazQomawAm4rbgtVSSc1EwmrGAZVB1KypHGvMHOJn5OLgvRtCmjSOZeejw7a1PYYpllKB0UKr_4IMBAhOeQLf_hOkXDBmOIPZef4XehumoU_zllqoInFy9sEBckOIccCmvBt8Z4d9SaGcuy5T1-XcdXnsOkXeHL1T1WH9GDiWm4DXB8Aj4sN3ISXXkvHfXdKuiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857452263</pqid></control><display><type>article</type><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ozkan, K.O. ; Gencer, N.G.</creator><creatorcontrib>Ozkan, K.O. ; Gencer, N.G.</creatorcontrib><description>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2008.2007361</identifier><identifier>PMID: 19272994</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Biological tissues ; Conductivity measurement ; Conductivity measurements ; Current measurement ; Data acquisition ; Data acquisition systems ; Electric Impedance ; electrical impedance imaging ; Electromagnetic Fields ; Electromagnetism ; Hirudinea ; Image reconstruction ; Imaging phantoms ; Imaging, Three-Dimensional - methods ; Leeches - anatomy &amp; histology ; Magnetic field measurement ; magnetic induction imaging ; Magnetic separation ; Magnetic variables measurement ; medical imaging ; Phantoms, Imaging ; Resistors ; Sensitivity and Specificity ; Studies</subject><ispartof>IEEE transactions on medical imaging, 2009-04, Vol.28 (4), p.564-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</citedby><cites>FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19272994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozkan, K.O.</creatorcontrib><creatorcontrib>Gencer, N.G.</creatorcontrib><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological tissues</subject><subject>Conductivity measurement</subject><subject>Conductivity measurements</subject><subject>Current measurement</subject><subject>Data acquisition</subject><subject>Data acquisition systems</subject><subject>Electric Impedance</subject><subject>electrical impedance imaging</subject><subject>Electromagnetic Fields</subject><subject>Electromagnetism</subject><subject>Hirudinea</subject><subject>Image reconstruction</subject><subject>Imaging phantoms</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Leeches - anatomy &amp; histology</subject><subject>Magnetic field measurement</subject><subject>magnetic induction imaging</subject><subject>Magnetic separation</subject><subject>Magnetic variables measurement</subject><subject>medical imaging</subject><subject>Phantoms, Imaging</subject><subject>Resistors</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r1EAYhwdR7LZ6FwQJPRQvqe_MZL681cXWhV0EXcFbmEzeLFOSTM0klT34vztxlxY86GU-n98DLz9CXlG4pBTMu-1mdckA9LwoLukTsqBC6JyJ4vtTsgCmdA4g2Qk5jfEWgBYCzHNyQg1TzJhiQX6tw8_8esAfE_Zun23srsfRu-zrVMVpaKzDbNXZne9377Mv6EIfx2FyY7pny9DX8_Hej_s_EMYsNNkHH9qw88622dbHOKXXe28fzRu0yYwd9mN8QZ41to348rifkW_XH7fLT_n6881qebXOXQF6zLlURrnGWaqdUVVFazQomawAm4rbgtVSSc1EwmrGAZVB1KypHGvMHOJn5OLgvRtCmjSOZeejw7a1PYYpllKB0UKr_4IMBAhOeQLf_hOkXDBmOIPZef4XehumoU_zllqoInFy9sEBckOIccCmvBt8Z4d9SaGcuy5T1-XcdXnsOkXeHL1T1WH9GDiWm4DXB8Aj4sN3ISXXkvHfXdKuiw</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Ozkan, K.O.</creator><creator>Gencer, N.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200904</creationdate><title>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</title><author>Ozkan, K.O. ; Gencer, N.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological tissues</topic><topic>Conductivity measurement</topic><topic>Conductivity measurements</topic><topic>Current measurement</topic><topic>Data acquisition</topic><topic>Data acquisition systems</topic><topic>Electric Impedance</topic><topic>electrical impedance imaging</topic><topic>Electromagnetic Fields</topic><topic>Electromagnetism</topic><topic>Hirudinea</topic><topic>Image reconstruction</topic><topic>Imaging phantoms</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Leeches - anatomy &amp; histology</topic><topic>Magnetic field measurement</topic><topic>magnetic induction imaging</topic><topic>Magnetic separation</topic><topic>Magnetic variables measurement</topic><topic>medical imaging</topic><topic>Phantoms, Imaging</topic><topic>Resistors</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozkan, K.O.</creatorcontrib><creatorcontrib>Gencer, N.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozkan, K.O.</au><au>Gencer, N.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2009-04</date><risdate>2009</risdate><volume>28</volume><issue>4</issue><spage>564</spage><epage>570</epage><pages>564-570</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A new data acquisition system has been developed. This system measures the external magnetic fields due to induced currents in the body at a relatively low operation frequency of 50 kHz . Data is obtained by scanning a 2-D area on the body surface. For each transmitter position, a single sample (averaged) of the field distribution is used for image reconstruction. The Steepest Descent Algorithm is used to solve the inverse problem related to the field profiles. High-resolution images of agar blocks and an anesthetized leech are presented. The system sensitivity is measured as 13.2 mV/(S/m) using saline solution phantoms and as 155 V/S using resistors. The signal to noise ratio in the measurements is calculated to be 35.44 dB. The linearity in the measurements is explored using saline solutions in the biological conductivity range. The nonlinearity is measured to be 3.96% of the full scale. The nonlinearity is found to be 0.12% when resistor phantoms are used. The spatial resolution in the conductivity images is measured as 9.36 mm for a 7.5-mm-diameter cylindrical agar object. The results show that it is possible to distinguish two bars separated 14.4 mm from each other.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19272994</pmid><doi>10.1109/TMI.2008.2007361</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2009-04, Vol.28 (4), p.564-570
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_67098587
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Animals
Biological tissues
Conductivity measurement
Conductivity measurements
Current measurement
Data acquisition
Data acquisition systems
Electric Impedance
electrical impedance imaging
Electromagnetic Fields
Electromagnetism
Hirudinea
Image reconstruction
Imaging phantoms
Imaging, Three-Dimensional - methods
Leeches - anatomy & histology
Magnetic field measurement
magnetic induction imaging
Magnetic separation
Magnetic variables measurement
medical imaging
Phantoms, Imaging
Resistors
Sensitivity and Specificity
Studies
title Low-Frequency Magnetic Subsurface Imaging: Reconstructing Conductivity Images of Biological Tissues via Magnetic Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Frequency%20Magnetic%20Subsurface%20Imaging:%20Reconstructing%20Conductivity%20Images%20of%20Biological%20Tissues%20via%20Magnetic%20Measurements&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ozkan,%20K.O.&rft.date=2009-04&rft.volume=28&rft.issue=4&rft.spage=564&rft.epage=570&rft.pages=564-570&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2008.2007361&rft_dat=%3Cproquest_pubme%3E1352293207%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-36797cfca18c97bb1de9e626b0efb3a42d676825679d230e79ee82fbc2f9ca183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857452263&rft_id=info:pmid/19272994&rft_ieee_id=4663862&rfr_iscdi=true