Loading…
Nanograined highly transparent yttria ceramics
The field of transparent ceramics is enjoying a renaissance, as refractory oxides are being developed as alternatives to single crystals in high-performance laser systems. However, a significant challenge remains regarding the reduction of the grain size to sufficiently subwavelength dimensions in o...
Saved in:
Published in: | Optics letters 2009-04, Vol.34 (7), p.1033-1035 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The field of transparent ceramics is enjoying a renaissance, as refractory oxides are being developed as alternatives to single crystals in high-performance laser systems. However, a significant challenge remains regarding the reduction of the grain size to sufficiently subwavelength dimensions in order to achieve the same degree of optical transparency as the single-crystal analog. Here we report transparent yttria (Y2O3) ceramics that were synthesized by a pressure-assisted, two-step, low-temperature sintering process with an average grain size of 300 nm. These nanograined ceramics exhibit equivalent transmission to single crystalline yttria for wavelengths greater than about 1200 nm. The single-crystal-like transmittance of the nanograined yttria ceramics in the visible and IR region is an important advancement for the use of these materials in more-extreme environments, including high-energy laser systems where reduction of scattering is paramount. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.34.001033 |