Loading…

Thermally Induced Sigmatropic Isomerization of Pseudosaccharyl Allylic Ether

The thermally induced sigmatropic isomerization of the pseudosaccharyl allylic ether [3-(allyloxy)-1,2-benzisothiazole 1,1-dioxide; ABID] has been investigated by a multidisciplinary approach using temperature dependent infrared spectroscopy, differential scanning calorimetry, and polarized light th...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-04, Vol.113 (15), p.3517-3522
Main Authors: Gómez-Zavaglia, A, Kaczor, A, Almeida, R, Cristiano, M. L. S, Eusébio, M. E. S, Maria, T. M. R, Mobili, P, Fausto, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermally induced sigmatropic isomerization of the pseudosaccharyl allylic ether [3-(allyloxy)-1,2-benzisothiazole 1,1-dioxide; ABID] has been investigated by a multidisciplinary approach using temperature dependent infrared spectroscopy, differential scanning calorimetry, and polarized light thermomicroscopy, complemented by theoretical methods. Migration of the allylic system from O to N occurs in the melted ABID, and the thermally obtained 2-allyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (ABIOD) starts to be produced at ca. 150 °C, in a process with an activation energy of ∼92 kJ mol−1. From kinetic data, a concerted [3,3′] sigmatropic mechanism is proposed. In the temperature range investigated, ABIOD was found to exhibit polymorphism. Cooling of the molten compound leads to the production of a metastable crystalline form, which upon annealing at room temperature might be transformed to the stable crystalline phase. ABID shows a single crystalline variety. Assignments were proposed for the infrared spectra of the observed neat condensed phases of the two compounds.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp8112254