Loading…

Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector

Calcitonin gene–related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell–based cell and gene therapy. To determine the feasibility of adenoviral‐mediated CGRP gene transfer into ex vivo–expanded MSCs, rat MSCs were isolat...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 2004-01, Vol.22 (7), p.1279-1291
Main Authors: Deng, Weiwen, Bivalacqua, Trinity J., Chattergoon, Natasha N., Jeter, James R., Kadowitz, Philip J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3
cites cdi_FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3
container_end_page 1291
container_issue 7
container_start_page 1279
container_title Stem cells (Dayton, Ohio)
container_volume 22
creator Deng, Weiwen
Bivalacqua, Trinity J.
Chattergoon, Natasha N.
Jeter, James R.
Kadowitz, Philip J.
description Calcitonin gene–related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell–based cell and gene therapy. To determine the feasibility of adenoviral‐mediated CGRP gene transfer into ex vivo–expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses. Adprepro‐CGRP and AdntlacZ, adenoviral vectors containing prepro‐CGRP or nuclear‐targeted β‐galactosidase reporter gene ntlacZ under the control of Rous sarcoma virus promoter, were used. In this study, it can be shown that transduction efficiency of adenoviral‐mediated gene transfer into ex vivo–expanded MSCs is dose dependent, transgene expression persists for more than 21 days in culture, and adenoviral transduction does not alter the proliferation or viability of MSCs. Transduced MSCs retain multipotentiality and transgene expression after cell differentiation. The expression and secretion of CGRP by Adprepro‐ CGRP–transduced MSCs was confirmed by Western blot analysis and enzyme immunoassay. The secretion of CGRP by Adprepro‐CGRP–transduced MSCs is dose dependent, and the transduced cells release as much as 9.5 ± 0.4 pmol CGRP/1 × 106 cells/48 hours (mean ± standard error of mean, n = 3) into culture medium at a multiplicity of infection of 300. Furthermore, culture supernatant from Adprepro‐CGRP–transduced MSCs increases intracellular cyclic AMP levels in pulmonary artery smooth muscle cells in culture. These findings suggest that replication‐deficient recombinant adenovirus can be used to gene engineer ex vivo–expanded MSCs and that high‐level secretion of biologically active CGRP can be achieved, underscoring the clinical potential of using this novel adult stem cell–based cell and gene therapy strategy for the treatment of cardiovascular diseases.
doi_str_mv 10.1634/stemcells.2004-0032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67139997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17767918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3</originalsourceid><addsrcrecordid>eNqNkc1u1DAURiMEoqXlCZCQV-xS7PgvFqtqFNpKrUCdtlvLY19XRkk82J52uuMd-oY8SRPNCJaw8l1837nyPVX1geATIij7nAsMFvo-nzQYsxpj2ryqDglnqmaKtK-nGQtRc6zUQfUu5x8YE8bb9m11QDiXSjBxWG278T6MACmM96jborvwEH__eu62azM6cOjKpBQf0bKkOJgeLeZ9qES0BJugAFqY3oYSxzCiMxhhql5Db8rU_A7rEhyg2zyjTx2M8SGkiXEHtsR0XL3xps_wfv8eVbdfu5vFeX357exicXpZW9qK6SerVphGCsWZY4ryVrSN9dJj5VfOcwqYtVJgT8Ayhx33dGWo5a1n3koHlh5Vn3bcdYo_N5CLHkKez2ZGiJushSRUKSX_GSRSCjnddQrSXdCmmHMCr9cpDCY9aYL1bEb_MaNnM3o2M7U-7vGb1QDub2evYgp82QUeQw9P_8PUy5vuqmlIIxV9Adgxor0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17767918</pqid></control><display><type>article</type><title>Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector</title><source>Oxford Journals Online</source><creator>Deng, Weiwen ; Bivalacqua, Trinity J. ; Chattergoon, Natasha N. ; Jeter, James R. ; Kadowitz, Philip J.</creator><creatorcontrib>Deng, Weiwen ; Bivalacqua, Trinity J. ; Chattergoon, Natasha N. ; Jeter, James R. ; Kadowitz, Philip J.</creatorcontrib><description>Calcitonin gene–related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell–based cell and gene therapy. To determine the feasibility of adenoviral‐mediated CGRP gene transfer into ex vivo–expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses. Adprepro‐CGRP and AdntlacZ, adenoviral vectors containing prepro‐CGRP or nuclear‐targeted β‐galactosidase reporter gene ntlacZ under the control of Rous sarcoma virus promoter, were used. In this study, it can be shown that transduction efficiency of adenoviral‐mediated gene transfer into ex vivo–expanded MSCs is dose dependent, transgene expression persists for more than 21 days in culture, and adenoviral transduction does not alter the proliferation or viability of MSCs. Transduced MSCs retain multipotentiality and transgene expression after cell differentiation. The expression and secretion of CGRP by Adprepro‐ CGRP–transduced MSCs was confirmed by Western blot analysis and enzyme immunoassay. The secretion of CGRP by Adprepro‐CGRP–transduced MSCs is dose dependent, and the transduced cells release as much as 9.5 ± 0.4 pmol CGRP/1 × 106 cells/48 hours (mean ± standard error of mean, n = 3) into culture medium at a multiplicity of infection of 300. Furthermore, culture supernatant from Adprepro‐CGRP–transduced MSCs increases intracellular cyclic AMP levels in pulmonary artery smooth muscle cells in culture. These findings suggest that replication‐deficient recombinant adenovirus can be used to gene engineer ex vivo–expanded MSCs and that high‐level secretion of biologically active CGRP can be achieved, underscoring the clinical potential of using this novel adult stem cell–based cell and gene therapy strategy for the treatment of cardiovascular diseases.</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1634/stemcells.2004-0032</identifier><identifier>PMID: 15579646</identifier><language>eng</language><publisher>Bristol: John Wiley &amp; Sons, Ltd</publisher><subject>Adenoviridae - genetics ; Adenovirus ; Adipocytes - cytology ; Adipocytes - metabolism ; Animals ; Avian Sarcoma Viruses - genetics ; beta-Galactosidase - metabolism ; Blotting, Western ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Calcitonin Gene-Related Peptide - genetics ; Calcitonin Gene-Related Peptide - secretion ; Calcitonin gene–related peptide ; Cell Differentiation ; Cell Proliferation ; Cell Survival ; Cyclic AMP - metabolism ; Differentiation ; Dose-Response Relationship, Drug ; Gene expression ; Gene therapy ; Gene Transfer Techniques ; Genes, Reporter ; Genetic Vectors ; Humans ; Immunoenzyme Techniques ; Male ; Marrow stromal cells ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Rats ; Rous sarcoma virus ; Stromal Cells - cytology ; Stromal Cells - metabolism ; Time Factors ; Transgenes</subject><ispartof>Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1279-1291</ispartof><rights>Copyright © 2004 AlphaMed Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3</citedby><cites>FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15579646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Weiwen</creatorcontrib><creatorcontrib>Bivalacqua, Trinity J.</creatorcontrib><creatorcontrib>Chattergoon, Natasha N.</creatorcontrib><creatorcontrib>Jeter, James R.</creatorcontrib><creatorcontrib>Kadowitz, Philip J.</creatorcontrib><title>Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Calcitonin gene–related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell–based cell and gene therapy. To determine the feasibility of adenoviral‐mediated CGRP gene transfer into ex vivo–expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses. Adprepro‐CGRP and AdntlacZ, adenoviral vectors containing prepro‐CGRP or nuclear‐targeted β‐galactosidase reporter gene ntlacZ under the control of Rous sarcoma virus promoter, were used. In this study, it can be shown that transduction efficiency of adenoviral‐mediated gene transfer into ex vivo–expanded MSCs is dose dependent, transgene expression persists for more than 21 days in culture, and adenoviral transduction does not alter the proliferation or viability of MSCs. Transduced MSCs retain multipotentiality and transgene expression after cell differentiation. The expression and secretion of CGRP by Adprepro‐ CGRP–transduced MSCs was confirmed by Western blot analysis and enzyme immunoassay. The secretion of CGRP by Adprepro‐CGRP–transduced MSCs is dose dependent, and the transduced cells release as much as 9.5 ± 0.4 pmol CGRP/1 × 106 cells/48 hours (mean ± standard error of mean, n = 3) into culture medium at a multiplicity of infection of 300. Furthermore, culture supernatant from Adprepro‐CGRP–transduced MSCs increases intracellular cyclic AMP levels in pulmonary artery smooth muscle cells in culture. These findings suggest that replication‐deficient recombinant adenovirus can be used to gene engineer ex vivo–expanded MSCs and that high‐level secretion of biologically active CGRP can be achieved, underscoring the clinical potential of using this novel adult stem cell–based cell and gene therapy strategy for the treatment of cardiovascular diseases.</description><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Avian Sarcoma Viruses - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Blotting, Western</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Calcitonin Gene-Related Peptide - genetics</subject><subject>Calcitonin Gene-Related Peptide - secretion</subject><subject>Calcitonin gene–related peptide</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cyclic AMP - metabolism</subject><subject>Differentiation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Immunoenzyme Techniques</subject><subject>Male</subject><subject>Marrow stromal cells</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Rats</subject><subject>Rous sarcoma virus</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><subject>Time Factors</subject><subject>Transgenes</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAURiMEoqXlCZCQV-xS7PgvFqtqFNpKrUCdtlvLY19XRkk82J52uuMd-oY8SRPNCJaw8l1837nyPVX1geATIij7nAsMFvo-nzQYsxpj2ryqDglnqmaKtK-nGQtRc6zUQfUu5x8YE8bb9m11QDiXSjBxWG278T6MACmM96jborvwEH__eu62azM6cOjKpBQf0bKkOJgeLeZ9qES0BJugAFqY3oYSxzCiMxhhql5Db8rU_A7rEhyg2zyjTx2M8SGkiXEHtsR0XL3xps_wfv8eVbdfu5vFeX357exicXpZW9qK6SerVphGCsWZY4ryVrSN9dJj5VfOcwqYtVJgT8Ayhx33dGWo5a1n3koHlh5Vn3bcdYo_N5CLHkKez2ZGiJushSRUKSX_GSRSCjnddQrSXdCmmHMCr9cpDCY9aYL1bEb_MaNnM3o2M7U-7vGb1QDub2evYgp82QUeQw9P_8PUy5vuqmlIIxV9Adgxor0</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Deng, Weiwen</creator><creator>Bivalacqua, Trinity J.</creator><creator>Chattergoon, Natasha N.</creator><creator>Jeter, James R.</creator><creator>Kadowitz, Philip J.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector</title><author>Deng, Weiwen ; Bivalacqua, Trinity J. ; Chattergoon, Natasha N. ; Jeter, James R. ; Kadowitz, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Avian Sarcoma Viruses - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Blotting, Western</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Calcitonin Gene-Related Peptide - genetics</topic><topic>Calcitonin Gene-Related Peptide - secretion</topic><topic>Calcitonin gene–related peptide</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cyclic AMP - metabolism</topic><topic>Differentiation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Immunoenzyme Techniques</topic><topic>Male</topic><topic>Marrow stromal cells</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Rats</topic><topic>Rous sarcoma virus</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><topic>Time Factors</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Weiwen</creatorcontrib><creatorcontrib>Bivalacqua, Trinity J.</creatorcontrib><creatorcontrib>Chattergoon, Natasha N.</creatorcontrib><creatorcontrib>Jeter, James R.</creatorcontrib><creatorcontrib>Kadowitz, Philip J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Weiwen</au><au>Bivalacqua, Trinity J.</au><au>Chattergoon, Natasha N.</au><au>Jeter, James R.</au><au>Kadowitz, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>22</volume><issue>7</issue><spage>1279</spage><epage>1291</epage><pages>1279-1291</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Calcitonin gene–related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell–based cell and gene therapy. To determine the feasibility of adenoviral‐mediated CGRP gene transfer into ex vivo–expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses. Adprepro‐CGRP and AdntlacZ, adenoviral vectors containing prepro‐CGRP or nuclear‐targeted β‐galactosidase reporter gene ntlacZ under the control of Rous sarcoma virus promoter, were used. In this study, it can be shown that transduction efficiency of adenoviral‐mediated gene transfer into ex vivo–expanded MSCs is dose dependent, transgene expression persists for more than 21 days in culture, and adenoviral transduction does not alter the proliferation or viability of MSCs. Transduced MSCs retain multipotentiality and transgene expression after cell differentiation. The expression and secretion of CGRP by Adprepro‐ CGRP–transduced MSCs was confirmed by Western blot analysis and enzyme immunoassay. The secretion of CGRP by Adprepro‐CGRP–transduced MSCs is dose dependent, and the transduced cells release as much as 9.5 ± 0.4 pmol CGRP/1 × 106 cells/48 hours (mean ± standard error of mean, n = 3) into culture medium at a multiplicity of infection of 300. Furthermore, culture supernatant from Adprepro‐CGRP–transduced MSCs increases intracellular cyclic AMP levels in pulmonary artery smooth muscle cells in culture. These findings suggest that replication‐deficient recombinant adenovirus can be used to gene engineer ex vivo–expanded MSCs and that high‐level secretion of biologically active CGRP can be achieved, underscoring the clinical potential of using this novel adult stem cell–based cell and gene therapy strategy for the treatment of cardiovascular diseases.</abstract><cop>Bristol</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>15579646</pmid><doi>10.1634/stemcells.2004-0032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2004-01, Vol.22 (7), p.1279-1291
issn 1066-5099
1549-4918
language eng
recordid cdi_proquest_miscellaneous_67139997
source Oxford Journals Online
subjects Adenoviridae - genetics
Adenovirus
Adipocytes - cytology
Adipocytes - metabolism
Animals
Avian Sarcoma Viruses - genetics
beta-Galactosidase - metabolism
Blotting, Western
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Calcitonin Gene-Related Peptide - genetics
Calcitonin Gene-Related Peptide - secretion
Calcitonin gene–related peptide
Cell Differentiation
Cell Proliferation
Cell Survival
Cyclic AMP - metabolism
Differentiation
Dose-Response Relationship, Drug
Gene expression
Gene therapy
Gene Transfer Techniques
Genes, Reporter
Genetic Vectors
Humans
Immunoenzyme Techniques
Male
Marrow stromal cells
Osteoblasts - cytology
Osteoblasts - metabolism
Rats
Rous sarcoma virus
Stromal Cells - cytology
Stromal Cells - metabolism
Time Factors
Transgenes
title Engineering Ex Vivo–Expanded Marrow Stromal Cells to Secrete Calcitonin Gene–Related Peptide Using Adenoviral Vector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Ex%20Vivo%E2%80%93Expanded%20Marrow%20Stromal%20Cells%20to%20Secrete%20Calcitonin%20Gene%E2%80%93Related%20Peptide%20Using%20Adenoviral%20Vector&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Deng,%20Weiwen&rft.date=2004-01-01&rft.volume=22&rft.issue=7&rft.spage=1279&rft.epage=1291&rft.pages=1279-1291&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1634/stemcells.2004-0032&rft_dat=%3Cproquest_cross%3E17767918%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3869-4b86a276954d49358682cf7f09fbdf53e048760f1ec4d0d5f3ba3c58f4fc7dec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17767918&rft_id=info:pmid/15579646&rfr_iscdi=true