Loading…
Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants
S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM a...
Saved in:
Published in: | Planta 2004-12, Vol.220 (2), p.278-285 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03 |
container_end_page | 285 |
container_issue | 2 |
container_start_page | 278 |
container_title | Planta |
container_volume | 220 |
creator | Sanchez-Aguayo, I Rodriguez-Galan, J.M Garcia, R Torreblanca, J Pardo, J.M |
description | S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway. |
doi_str_mv | 10.1007/s00425-004-1350-2 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67146584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23388636</jstor_id><sourcerecordid>23388636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</originalsourceid><addsrcrecordid>eNpdkc2O0zAUhS0EYjoDD8ACsEaCXeDajh13iUb8SZVYdFhbTuK0rhK7-LposuPRcZWKkdhcWz7fPTrWIeQVgw8MoPmIADWXVZkVExIq_oSsWC14xaHWT8kKoNxhLeQVuUY8ABSxaZ6TKyYF51rzFfmztWOmmJNDpC7sbegc0od5dBPt3W83xuPkQqY29NQ9HM-Yj4HGgW4r27sQcR6rTTW5vC_vPjiKc8h7i476QEe_C36YfdjR7BFPxbps5jjZHOlxtCHjC_JssCO6l5fzhtx_-Xx_963a_Pj6_e7Tpupq4Ln8b2hd10gGQ9eqtlfcqrUSbS9YM4DSvdU9cGa5lK2oGyfXrOOKNV3v6rYFcUPeL7bHFH-VHNlMHjs3lgwuntCohtVK6rqAt_-Bh3hKoUQzmoPWoKQsEFugLkXE5AZzTH6yaTYMzLkas1RjyjTnagwvO28uxqd2cv3jxqWLAry7ABY7Ow6pdOHxkVO1UI1eF-71wh0wx_RP50JorYQq-ttFH2w0dpeKx88tByaAgeJCKvEXXQyrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820880655</pqid></control><display><type>article</type><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</creator><creatorcontrib>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</creatorcontrib><description>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-004-1350-2</identifier><identifier>PMID: 15322882</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Biological and medical sciences ; Biosynthesis ; Cell walls ; Environment ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Plant ; Leaves ; lignification ; Lignin ; Lignin - metabolism ; Lycopersicon esculentum - cytology ; Lycopersicon esculentum - drug effects ; Lycopersicon esculentum - enzymology ; Lycopersicon esculentum - growth & development ; messenger RNA ; methionine adenosyltransferase ; Methionine Adenosyltransferase - biosynthesis ; Methionine Adenosyltransferase - genetics ; plant biochemistry ; plant genetics ; Plant Leaves - enzymology ; Plant physiology and development ; Plant roots ; Plant Roots - enzymology ; Plant Shoots - enzymology ; Plant tissues ; Plants ; RNA ; Roots ; S-Adenosylmethionine - metabolism ; Salinity ; salt stress ; Salts ; Sodium Chloride - pharmacology ; Solanum lycopersicum var. lycopersicum ; Solutes ; Stems ; Tissue Distribution ; Tomatoes ; Up-Regulation ; vegetable crops ; Water and solutes. Absorption, translocation and permeability ; Water transport ; Xylem</subject><ispartof>Planta, 2004-12, Vol.220 (2), p.278-285</ispartof><rights>Springer-Verlag 2004</rights><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</citedby><cites>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23388636$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23388636$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16436789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Aguayo, I</creatorcontrib><creatorcontrib>Rodriguez-Galan, J.M</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><creatorcontrib>Torreblanca, J</creatorcontrib><creatorcontrib>Pardo, J.M</creatorcontrib><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><title>Planta</title><addtitle>Planta</addtitle><description>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</description><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cell walls</subject><subject>Environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Leaves</subject><subject>lignification</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Lycopersicon esculentum - cytology</subject><subject>Lycopersicon esculentum - drug effects</subject><subject>Lycopersicon esculentum - enzymology</subject><subject>Lycopersicon esculentum - growth & development</subject><subject>messenger RNA</subject><subject>methionine adenosyltransferase</subject><subject>Methionine Adenosyltransferase - biosynthesis</subject><subject>Methionine Adenosyltransferase - genetics</subject><subject>plant biochemistry</subject><subject>plant genetics</subject><subject>Plant Leaves - enzymology</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - enzymology</subject><subject>Plant Shoots - enzymology</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>RNA</subject><subject>Roots</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Salinity</subject><subject>salt stress</subject><subject>Salts</subject><subject>Sodium Chloride - pharmacology</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>Solutes</subject><subject>Stems</subject><subject>Tissue Distribution</subject><subject>Tomatoes</subject><subject>Up-Regulation</subject><subject>vegetable crops</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><subject>Water transport</subject><subject>Xylem</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkc2O0zAUhS0EYjoDD8ACsEaCXeDajh13iUb8SZVYdFhbTuK0rhK7-LposuPRcZWKkdhcWz7fPTrWIeQVgw8MoPmIADWXVZkVExIq_oSsWC14xaHWT8kKoNxhLeQVuUY8ABSxaZ6TKyYF51rzFfmztWOmmJNDpC7sbegc0od5dBPt3W83xuPkQqY29NQ9HM-Yj4HGgW4r27sQcR6rTTW5vC_vPjiKc8h7i476QEe_C36YfdjR7BFPxbps5jjZHOlxtCHjC_JssCO6l5fzhtx_-Xx_963a_Pj6_e7Tpupq4Ln8b2hd10gGQ9eqtlfcqrUSbS9YM4DSvdU9cGa5lK2oGyfXrOOKNV3v6rYFcUPeL7bHFH-VHNlMHjs3lgwuntCohtVK6rqAt_-Bh3hKoUQzmoPWoKQsEFugLkXE5AZzTH6yaTYMzLkas1RjyjTnagwvO28uxqd2cv3jxqWLAry7ABY7Ow6pdOHxkVO1UI1eF-71wh0wx_RP50JorYQq-ttFH2w0dpeKx88tByaAgeJCKvEXXQyrOg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Sanchez-Aguayo, I</creator><creator>Rodriguez-Galan, J.M</creator><creator>Garcia, R</creator><creator>Torreblanca, J</creator><creator>Pardo, J.M</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><author>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cell walls</topic><topic>Environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Leaves</topic><topic>lignification</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Lycopersicon esculentum - cytology</topic><topic>Lycopersicon esculentum - drug effects</topic><topic>Lycopersicon esculentum - enzymology</topic><topic>Lycopersicon esculentum - growth & development</topic><topic>messenger RNA</topic><topic>methionine adenosyltransferase</topic><topic>Methionine Adenosyltransferase - biosynthesis</topic><topic>Methionine Adenosyltransferase - genetics</topic><topic>plant biochemistry</topic><topic>plant genetics</topic><topic>Plant Leaves - enzymology</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - enzymology</topic><topic>Plant Shoots - enzymology</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>RNA</topic><topic>Roots</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Salinity</topic><topic>salt stress</topic><topic>Salts</topic><topic>Sodium Chloride - pharmacology</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>Solutes</topic><topic>Stems</topic><topic>Tissue Distribution</topic><topic>Tomatoes</topic><topic>Up-Regulation</topic><topic>vegetable crops</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><topic>Water transport</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Aguayo, I</creatorcontrib><creatorcontrib>Rodriguez-Galan, J.M</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><creatorcontrib>Torreblanca, J</creatorcontrib><creatorcontrib>Pardo, J.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Aguayo, I</au><au>Rodriguez-Galan, J.M</au><au>Garcia, R</au><au>Torreblanca, J</au><au>Pardo, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>220</volume><issue>2</issue><spage>278</spage><epage>285</epage><pages>278-285</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>15322882</pmid><doi>10.1007/s00425-004-1350-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2004-12, Vol.220 (2), p.278-285 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_67146584 |
source | JSTOR Archival Journals and Primary Sources Collection; Springer Nature |
subjects | Biological and medical sciences Biosynthesis Cell walls Environment Fundamental and applied biological sciences. Psychology gene expression regulation Gene Expression Regulation, Plant Leaves lignification Lignin Lignin - metabolism Lycopersicon esculentum - cytology Lycopersicon esculentum - drug effects Lycopersicon esculentum - enzymology Lycopersicon esculentum - growth & development messenger RNA methionine adenosyltransferase Methionine Adenosyltransferase - biosynthesis Methionine Adenosyltransferase - genetics plant biochemistry plant genetics Plant Leaves - enzymology Plant physiology and development Plant roots Plant Roots - enzymology Plant Shoots - enzymology Plant tissues Plants RNA Roots S-Adenosylmethionine - metabolism Salinity salt stress Salts Sodium Chloride - pharmacology Solanum lycopersicum var. lycopersicum Solutes Stems Tissue Distribution Tomatoes Up-Regulation vegetable crops Water and solutes. Absorption, translocation and permeability Water transport Xylem |
title | Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20stress%20enhances%20xylem%20development%20and%20expression%20of%20S-adenosyl-L-methionine%20synthase%20in%20lignifying%20tissues%20of%20tomato%20plants&rft.jtitle=Planta&rft.au=Sanchez-Aguayo,%20I&rft.date=2004-12-01&rft.volume=220&rft.issue=2&rft.spage=278&rft.epage=285&rft.pages=278-285&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-004-1350-2&rft_dat=%3Cjstor_proqu%3E23388636%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=820880655&rft_id=info:pmid/15322882&rft_jstor_id=23388636&rfr_iscdi=true |