Loading…

Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants

S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM a...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2004-12, Vol.220 (2), p.278-285
Main Authors: Sanchez-Aguayo, I, Rodriguez-Galan, J.M, Garcia, R, Torreblanca, J, Pardo, J.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03
cites cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03
container_end_page 285
container_issue 2
container_start_page 278
container_title Planta
container_volume 220
creator Sanchez-Aguayo, I
Rodriguez-Galan, J.M
Garcia, R
Torreblanca, J
Pardo, J.M
description S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.
doi_str_mv 10.1007/s00425-004-1350-2
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67146584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23388636</jstor_id><sourcerecordid>23388636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</originalsourceid><addsrcrecordid>eNpdkc2O0zAUhS0EYjoDD8ACsEaCXeDajh13iUb8SZVYdFhbTuK0rhK7-LposuPRcZWKkdhcWz7fPTrWIeQVgw8MoPmIADWXVZkVExIq_oSsWC14xaHWT8kKoNxhLeQVuUY8ABSxaZ6TKyYF51rzFfmztWOmmJNDpC7sbegc0od5dBPt3W83xuPkQqY29NQ9HM-Yj4HGgW4r27sQcR6rTTW5vC_vPjiKc8h7i476QEe_C36YfdjR7BFPxbps5jjZHOlxtCHjC_JssCO6l5fzhtx_-Xx_963a_Pj6_e7Tpupq4Ln8b2hd10gGQ9eqtlfcqrUSbS9YM4DSvdU9cGa5lK2oGyfXrOOKNV3v6rYFcUPeL7bHFH-VHNlMHjs3lgwuntCohtVK6rqAt_-Bh3hKoUQzmoPWoKQsEFugLkXE5AZzTH6yaTYMzLkas1RjyjTnagwvO28uxqd2cv3jxqWLAry7ABY7Ow6pdOHxkVO1UI1eF-71wh0wx_RP50JorYQq-ttFH2w0dpeKx88tByaAgeJCKvEXXQyrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820880655</pqid></control><display><type>article</type><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</creator><creatorcontrib>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</creatorcontrib><description>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-004-1350-2</identifier><identifier>PMID: 15322882</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Biological and medical sciences ; Biosynthesis ; Cell walls ; Environment ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Plant ; Leaves ; lignification ; Lignin ; Lignin - metabolism ; Lycopersicon esculentum - cytology ; Lycopersicon esculentum - drug effects ; Lycopersicon esculentum - enzymology ; Lycopersicon esculentum - growth &amp; development ; messenger RNA ; methionine adenosyltransferase ; Methionine Adenosyltransferase - biosynthesis ; Methionine Adenosyltransferase - genetics ; plant biochemistry ; plant genetics ; Plant Leaves - enzymology ; Plant physiology and development ; Plant roots ; Plant Roots - enzymology ; Plant Shoots - enzymology ; Plant tissues ; Plants ; RNA ; Roots ; S-Adenosylmethionine - metabolism ; Salinity ; salt stress ; Salts ; Sodium Chloride - pharmacology ; Solanum lycopersicum var. lycopersicum ; Solutes ; Stems ; Tissue Distribution ; Tomatoes ; Up-Regulation ; vegetable crops ; Water and solutes. Absorption, translocation and permeability ; Water transport ; Xylem</subject><ispartof>Planta, 2004-12, Vol.220 (2), p.278-285</ispartof><rights>Springer-Verlag 2004</rights><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</citedby><cites>FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23388636$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23388636$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16436789$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15322882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Aguayo, I</creatorcontrib><creatorcontrib>Rodriguez-Galan, J.M</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><creatorcontrib>Torreblanca, J</creatorcontrib><creatorcontrib>Pardo, J.M</creatorcontrib><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><title>Planta</title><addtitle>Planta</addtitle><description>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</description><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cell walls</subject><subject>Environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Leaves</subject><subject>lignification</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Lycopersicon esculentum - cytology</subject><subject>Lycopersicon esculentum - drug effects</subject><subject>Lycopersicon esculentum - enzymology</subject><subject>Lycopersicon esculentum - growth &amp; development</subject><subject>messenger RNA</subject><subject>methionine adenosyltransferase</subject><subject>Methionine Adenosyltransferase - biosynthesis</subject><subject>Methionine Adenosyltransferase - genetics</subject><subject>plant biochemistry</subject><subject>plant genetics</subject><subject>Plant Leaves - enzymology</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - enzymology</subject><subject>Plant Shoots - enzymology</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>RNA</subject><subject>Roots</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Salinity</subject><subject>salt stress</subject><subject>Salts</subject><subject>Sodium Chloride - pharmacology</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>Solutes</subject><subject>Stems</subject><subject>Tissue Distribution</subject><subject>Tomatoes</subject><subject>Up-Regulation</subject><subject>vegetable crops</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><subject>Water transport</subject><subject>Xylem</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkc2O0zAUhS0EYjoDD8ACsEaCXeDajh13iUb8SZVYdFhbTuK0rhK7-LposuPRcZWKkdhcWz7fPTrWIeQVgw8MoPmIADWXVZkVExIq_oSsWC14xaHWT8kKoNxhLeQVuUY8ABSxaZ6TKyYF51rzFfmztWOmmJNDpC7sbegc0od5dBPt3W83xuPkQqY29NQ9HM-Yj4HGgW4r27sQcR6rTTW5vC_vPjiKc8h7i476QEe_C36YfdjR7BFPxbps5jjZHOlxtCHjC_JssCO6l5fzhtx_-Xx_963a_Pj6_e7Tpupq4Ln8b2hd10gGQ9eqtlfcqrUSbS9YM4DSvdU9cGa5lK2oGyfXrOOKNV3v6rYFcUPeL7bHFH-VHNlMHjs3lgwuntCohtVK6rqAt_-Bh3hKoUQzmoPWoKQsEFugLkXE5AZzTH6yaTYMzLkas1RjyjTnagwvO28uxqd2cv3jxqWLAry7ABY7Ow6pdOHxkVO1UI1eF-71wh0wx_RP50JorYQq-ttFH2w0dpeKx88tByaAgeJCKvEXXQyrOg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Sanchez-Aguayo, I</creator><creator>Rodriguez-Galan, J.M</creator><creator>Garcia, R</creator><creator>Torreblanca, J</creator><creator>Pardo, J.M</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</title><author>Sanchez-Aguayo, I ; Rodriguez-Galan, J.M ; Garcia, R ; Torreblanca, J ; Pardo, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cell walls</topic><topic>Environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Leaves</topic><topic>lignification</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Lycopersicon esculentum - cytology</topic><topic>Lycopersicon esculentum - drug effects</topic><topic>Lycopersicon esculentum - enzymology</topic><topic>Lycopersicon esculentum - growth &amp; development</topic><topic>messenger RNA</topic><topic>methionine adenosyltransferase</topic><topic>Methionine Adenosyltransferase - biosynthesis</topic><topic>Methionine Adenosyltransferase - genetics</topic><topic>plant biochemistry</topic><topic>plant genetics</topic><topic>Plant Leaves - enzymology</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - enzymology</topic><topic>Plant Shoots - enzymology</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>RNA</topic><topic>Roots</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Salinity</topic><topic>salt stress</topic><topic>Salts</topic><topic>Sodium Chloride - pharmacology</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>Solutes</topic><topic>Stems</topic><topic>Tissue Distribution</topic><topic>Tomatoes</topic><topic>Up-Regulation</topic><topic>vegetable crops</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><topic>Water transport</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Aguayo, I</creatorcontrib><creatorcontrib>Rodriguez-Galan, J.M</creatorcontrib><creatorcontrib>Garcia, R</creatorcontrib><creatorcontrib>Torreblanca, J</creatorcontrib><creatorcontrib>Pardo, J.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Aguayo, I</au><au>Rodriguez-Galan, J.M</au><au>Garcia, R</au><au>Torreblanca, J</au><au>Pardo, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>220</volume><issue>2</issue><spage>278</spage><epage>285</epage><pages>278-285</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>S-Adenosyl-L-methionine synthase (SAM; ATP:L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>15322882</pmid><doi>10.1007/s00425-004-1350-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2004-12, Vol.220 (2), p.278-285
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_67146584
source JSTOR Archival Journals and Primary Sources Collection; Springer Nature
subjects Biological and medical sciences
Biosynthesis
Cell walls
Environment
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Expression Regulation, Plant
Leaves
lignification
Lignin
Lignin - metabolism
Lycopersicon esculentum - cytology
Lycopersicon esculentum - drug effects
Lycopersicon esculentum - enzymology
Lycopersicon esculentum - growth & development
messenger RNA
methionine adenosyltransferase
Methionine Adenosyltransferase - biosynthesis
Methionine Adenosyltransferase - genetics
plant biochemistry
plant genetics
Plant Leaves - enzymology
Plant physiology and development
Plant roots
Plant Roots - enzymology
Plant Shoots - enzymology
Plant tissues
Plants
RNA
Roots
S-Adenosylmethionine - metabolism
Salinity
salt stress
Salts
Sodium Chloride - pharmacology
Solanum lycopersicum var. lycopersicum
Solutes
Stems
Tissue Distribution
Tomatoes
Up-Regulation
vegetable crops
Water and solutes. Absorption, translocation and permeability
Water transport
Xylem
title Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20stress%20enhances%20xylem%20development%20and%20expression%20of%20S-adenosyl-L-methionine%20synthase%20in%20lignifying%20tissues%20of%20tomato%20plants&rft.jtitle=Planta&rft.au=Sanchez-Aguayo,%20I&rft.date=2004-12-01&rft.volume=220&rft.issue=2&rft.spage=278&rft.epage=285&rft.pages=278-285&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-004-1350-2&rft_dat=%3Cjstor_proqu%3E23388636%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-13fbec7510fcb6bd62a6963bd317f068da8d021a255b347e591c2617cde4bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=820880655&rft_id=info:pmid/15322882&rft_jstor_id=23388636&rfr_iscdi=true