Loading…

Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution

Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A 2004-11, Vol.1056 (1), p.145-154
Main Authors: Sinha, Amanda E., Hope, Janiece L., Prazen, Bryan J., Fraga, Carlos G., Nilsson, Erik J., Synovec, Robert E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43
cites cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43
container_end_page 154
container_issue 1
container_start_page 145
container_title Journal of Chromatography A
container_volume 1056
creator Sinha, Amanda E.
Hope, Janiece L.
Prazen, Bryan J.
Fraga, Carlos G.
Nilsson, Erik J.
Synovec, Robert E.
description Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers ( iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo ( Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.
doi_str_mv 10.1016/j.chroma.2004.06.110
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67173246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967304010817</els_id><sourcerecordid>67173246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</originalsourceid><addsrcrecordid>eNp9kU2O1DAQhbMAMcPADRDyBnYJduL8bZDQaPiRBrGBtVWxK91u7DjYTlDvuANH4UacBLcSaXasrCd9r165Xpa9YLRglDVvToU8emehKCnlBW0Kxuij7JrSkuV901ZX2dMQTpSylrblk-yK1XVf15xfZ38-LybqFbyGiCSgQZmkjmcCgQCxGL2WZHSe4ApmgainA5HOzh6POAW9Iok_Xa60vSg3gSGH5NzWie7gYT6e__76HROQuzEfjT4cI7EQAglzCktcyjiTsAynJFGR6JIdrduzZ4TvRKF00-rMElPGs-zxCCbg8_29yb69v_t6-zG___Lh0-27-1xWXRfzrkeOjCpV9x3UnGI_jDT9egBWdaBq2XS07BSjrRpYh20pWS_pwOXY9WMLvLrJXm9zZ-9-LBiisDpINAYmdEsQTcvaquRNAvkGSu9C8DiK2WsL_iwYFZeCxElsFxGXggRtRCoo2V7u85fBonow7e0k4NUOQJBgRg-T1OGBa8q64tUl_-3GYbrGqtGLIDVOEpX26aZCOf3_Tf4BoPi6PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67173246</pqid></control><display><type>article</type><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><source>ScienceDirect Freedom Collection</source><creator>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</creator><creatorcontrib>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</creatorcontrib><description>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers ( iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo ( Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/j.chroma.2004.06.110</identifier><identifier>PMID: 15595544</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Chemometrics ; Chromatographic methods and physical methods associated with chromatography ; Deconvolution ; Evaluation Studies as Topic ; Exact sciences and technology ; Gas chromatographic methods ; Gas chromatography, comprehensive two-dimensional ; Gas Chromatography-Mass Spectrometry - methods ; Multivariate selectivity ; Net analyte signal ; Parallel factor analysis ; Plant Extracts - chemistry ; Sensitivity and Specificity</subject><ispartof>Journal of Chromatography A, 2004-11, Vol.1056 (1), p.145-154</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</citedby><cites>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16253436$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15595544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha, Amanda E.</creatorcontrib><creatorcontrib>Hope, Janiece L.</creatorcontrib><creatorcontrib>Prazen, Bryan J.</creatorcontrib><creatorcontrib>Fraga, Carlos G.</creatorcontrib><creatorcontrib>Nilsson, Erik J.</creatorcontrib><creatorcontrib>Synovec, Robert E.</creatorcontrib><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers ( iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo ( Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Deconvolution</subject><subject>Evaluation Studies as Topic</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas chromatography, comprehensive two-dimensional</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Multivariate selectivity</subject><subject>Net analyte signal</subject><subject>Parallel factor analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Sensitivity and Specificity</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU2O1DAQhbMAMcPADRDyBnYJduL8bZDQaPiRBrGBtVWxK91u7DjYTlDvuANH4UacBLcSaXasrCd9r165Xpa9YLRglDVvToU8emehKCnlBW0Kxuij7JrSkuV901ZX2dMQTpSylrblk-yK1XVf15xfZ38-LybqFbyGiCSgQZmkjmcCgQCxGL2WZHSe4ApmgainA5HOzh6POAW9Iok_Xa60vSg3gSGH5NzWie7gYT6e__76HROQuzEfjT4cI7EQAglzCktcyjiTsAynJFGR6JIdrduzZ4TvRKF00-rMElPGs-zxCCbg8_29yb69v_t6-zG___Lh0-27-1xWXRfzrkeOjCpV9x3UnGI_jDT9egBWdaBq2XS07BSjrRpYh20pWS_pwOXY9WMLvLrJXm9zZ-9-LBiisDpINAYmdEsQTcvaquRNAvkGSu9C8DiK2WsL_iwYFZeCxElsFxGXggRtRCoo2V7u85fBonow7e0k4NUOQJBgRg-T1OGBa8q64tUl_-3GYbrGqtGLIDVOEpX26aZCOf3_Tf4BoPi6PQ</recordid><startdate>20041112</startdate><enddate>20041112</enddate><creator>Sinha, Amanda E.</creator><creator>Hope, Janiece L.</creator><creator>Prazen, Bryan J.</creator><creator>Fraga, Carlos G.</creator><creator>Nilsson, Erik J.</creator><creator>Synovec, Robert E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041112</creationdate><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><author>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Deconvolution</topic><topic>Evaluation Studies as Topic</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas chromatography, comprehensive two-dimensional</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Multivariate selectivity</topic><topic>Net analyte signal</topic><topic>Parallel factor analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Amanda E.</creatorcontrib><creatorcontrib>Hope, Janiece L.</creatorcontrib><creatorcontrib>Prazen, Bryan J.</creatorcontrib><creatorcontrib>Fraga, Carlos G.</creatorcontrib><creatorcontrib>Nilsson, Erik J.</creatorcontrib><creatorcontrib>Synovec, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Amanda E.</au><au>Hope, Janiece L.</au><au>Prazen, Bryan J.</au><au>Fraga, Carlos G.</au><au>Nilsson, Erik J.</au><au>Synovec, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2004-11-12</date><risdate>2004</risdate><volume>1056</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0021-9673</issn><coden>JOCRAM</coden><abstract>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers ( iso-butyl, sec-butyl, tert-butyl, and n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo ( Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>15595544</pmid><doi>10.1016/j.chroma.2004.06.110</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2004-11, Vol.1056 (1), p.145-154
issn 0021-9673
language eng
recordid cdi_proquest_miscellaneous_67173246
source ScienceDirect Freedom Collection
subjects Analytical chemistry
Chemistry
Chemometrics
Chromatographic methods and physical methods associated with chromatography
Deconvolution
Evaluation Studies as Topic
Exact sciences and technology
Gas chromatographic methods
Gas chromatography, comprehensive two-dimensional
Gas Chromatography-Mass Spectrometry - methods
Multivariate selectivity
Net analyte signal
Parallel factor analysis
Plant Extracts - chemistry
Sensitivity and Specificity
title Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20selectivity%20as%20a%20metric%20for%20evaluating%20comprehensive%20two-dimensional%20gas%20chromatography%E2%80%93time-of-flight%20mass%20spectrometry%20subjected%20to%20chemometric%20peak%20deconvolution&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Sinha,%20Amanda%20E.&rft.date=2004-11-12&rft.volume=1056&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0021-9673&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2004.06.110&rft_dat=%3Cproquest_cross%3E67173246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67173246&rft_id=info:pmid/15595544&rfr_iscdi=true