Loading…
Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution
Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern...
Saved in:
Published in: | Journal of Chromatography A 2004-11, Vol.1056 (1), p.145-154 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43 |
container_end_page | 154 |
container_issue | 1 |
container_start_page | 145 |
container_title | Journal of Chromatography A |
container_volume | 1056 |
creator | Sinha, Amanda E. Hope, Janiece L. Prazen, Bryan J. Fraga, Carlos G. Nilsson, Erik J. Synovec, Robert E. |
description | Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (
iso-butyl,
sec-butyl,
tert-butyl, and
n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (
Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions. |
doi_str_mv | 10.1016/j.chroma.2004.06.110 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67173246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967304010817</els_id><sourcerecordid>67173246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</originalsourceid><addsrcrecordid>eNp9kU2O1DAQhbMAMcPADRDyBnYJduL8bZDQaPiRBrGBtVWxK91u7DjYTlDvuANH4UacBLcSaXasrCd9r165Xpa9YLRglDVvToU8emehKCnlBW0Kxuij7JrSkuV901ZX2dMQTpSylrblk-yK1XVf15xfZ38-LybqFbyGiCSgQZmkjmcCgQCxGL2WZHSe4ApmgainA5HOzh6POAW9Iok_Xa60vSg3gSGH5NzWie7gYT6e__76HROQuzEfjT4cI7EQAglzCktcyjiTsAynJFGR6JIdrduzZ4TvRKF00-rMElPGs-zxCCbg8_29yb69v_t6-zG___Lh0-27-1xWXRfzrkeOjCpV9x3UnGI_jDT9egBWdaBq2XS07BSjrRpYh20pWS_pwOXY9WMLvLrJXm9zZ-9-LBiisDpINAYmdEsQTcvaquRNAvkGSu9C8DiK2WsL_iwYFZeCxElsFxGXggRtRCoo2V7u85fBonow7e0k4NUOQJBgRg-T1OGBa8q64tUl_-3GYbrGqtGLIDVOEpX26aZCOf3_Tf4BoPi6PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67173246</pqid></control><display><type>article</type><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><source>ScienceDirect Freedom Collection</source><creator>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</creator><creatorcontrib>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</creatorcontrib><description>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (
iso-butyl,
sec-butyl,
tert-butyl, and
n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (
Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/j.chroma.2004.06.110</identifier><identifier>PMID: 15595544</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Chemometrics ; Chromatographic methods and physical methods associated with chromatography ; Deconvolution ; Evaluation Studies as Topic ; Exact sciences and technology ; Gas chromatographic methods ; Gas chromatography, comprehensive two-dimensional ; Gas Chromatography-Mass Spectrometry - methods ; Multivariate selectivity ; Net analyte signal ; Parallel factor analysis ; Plant Extracts - chemistry ; Sensitivity and Specificity</subject><ispartof>Journal of Chromatography A, 2004-11, Vol.1056 (1), p.145-154</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</citedby><cites>FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16253436$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15595544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha, Amanda E.</creatorcontrib><creatorcontrib>Hope, Janiece L.</creatorcontrib><creatorcontrib>Prazen, Bryan J.</creatorcontrib><creatorcontrib>Fraga, Carlos G.</creatorcontrib><creatorcontrib>Nilsson, Erik J.</creatorcontrib><creatorcontrib>Synovec, Robert E.</creatorcontrib><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (
iso-butyl,
sec-butyl,
tert-butyl, and
n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (
Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Deconvolution</subject><subject>Evaluation Studies as Topic</subject><subject>Exact sciences and technology</subject><subject>Gas chromatographic methods</subject><subject>Gas chromatography, comprehensive two-dimensional</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Multivariate selectivity</subject><subject>Net analyte signal</subject><subject>Parallel factor analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Sensitivity and Specificity</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU2O1DAQhbMAMcPADRDyBnYJduL8bZDQaPiRBrGBtVWxK91u7DjYTlDvuANH4UacBLcSaXasrCd9r165Xpa9YLRglDVvToU8emehKCnlBW0Kxuij7JrSkuV901ZX2dMQTpSylrblk-yK1XVf15xfZ38-LybqFbyGiCSgQZmkjmcCgQCxGL2WZHSe4ApmgainA5HOzh6POAW9Iok_Xa60vSg3gSGH5NzWie7gYT6e__76HROQuzEfjT4cI7EQAglzCktcyjiTsAynJFGR6JIdrduzZ4TvRKF00-rMElPGs-zxCCbg8_29yb69v_t6-zG___Lh0-27-1xWXRfzrkeOjCpV9x3UnGI_jDT9egBWdaBq2XS07BSjrRpYh20pWS_pwOXY9WMLvLrJXm9zZ-9-LBiisDpINAYmdEsQTcvaquRNAvkGSu9C8DiK2WsL_iwYFZeCxElsFxGXggRtRCoo2V7u85fBonow7e0k4NUOQJBgRg-T1OGBa8q64tUl_-3GYbrGqtGLIDVOEpX26aZCOf3_Tf4BoPi6PQ</recordid><startdate>20041112</startdate><enddate>20041112</enddate><creator>Sinha, Amanda E.</creator><creator>Hope, Janiece L.</creator><creator>Prazen, Bryan J.</creator><creator>Fraga, Carlos G.</creator><creator>Nilsson, Erik J.</creator><creator>Synovec, Robert E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041112</creationdate><title>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</title><author>Sinha, Amanda E. ; Hope, Janiece L. ; Prazen, Bryan J. ; Fraga, Carlos G. ; Nilsson, Erik J. ; Synovec, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Deconvolution</topic><topic>Evaluation Studies as Topic</topic><topic>Exact sciences and technology</topic><topic>Gas chromatographic methods</topic><topic>Gas chromatography, comprehensive two-dimensional</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Multivariate selectivity</topic><topic>Net analyte signal</topic><topic>Parallel factor analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Amanda E.</creatorcontrib><creatorcontrib>Hope, Janiece L.</creatorcontrib><creatorcontrib>Prazen, Bryan J.</creatorcontrib><creatorcontrib>Fraga, Carlos G.</creatorcontrib><creatorcontrib>Nilsson, Erik J.</creatorcontrib><creatorcontrib>Synovec, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Amanda E.</au><au>Hope, Janiece L.</au><au>Prazen, Bryan J.</au><au>Fraga, Carlos G.</au><au>Nilsson, Erik J.</au><au>Synovec, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2004-11-12</date><risdate>2004</risdate><volume>1056</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0021-9673</issn><coden>JOCRAM</coden><abstract>Two-dimensional gas chromatography (GC × GC) coupled to time-of-flight mass spectrometry (TOFMS) [GC × GC–TOFMS)] is a highly selective technique well suited to analyzing complex mixtures. The data generated is information-rich, making it applicable to multivariate quantitative analysis and pattern recognition. One separation on a GC × GC–TOFMS provides retention times on two chromatographic columns and a complete mass spectrum for each component within the mixture. In this report, we demonstrate how GC × GC–TOFMS combined with trilinear chemometric techniques, specifically parallel factor analysis (PARAFAC) initiated by trilinear decomposition (TLD), results in a powerful analytical methodology for multivariate deconvolution. Using PARAFAC, partially resolved components in complex mixtures can be deconvoluted and identified without requiring a standard data set, signal shape assumptions or any fully selective mass signals. A set of four isomers (
iso-butyl,
sec-butyl,
tert-butyl, and
n-butyl benzenes) is used to investigate the practical limitations of PARAFAC for the deconvolution of isomers at varying degrees of chromatographic resolution and mass spectral selectivity. In this report, multivariate selectivity was tested as a metric for evaluating GC × GC–TOFMS data that is subjected to PARAFAC peak deconvolution. It was found that deconvolution results were best with multivariate selectivities over 0.18. Furthermore, the application of GC × GC–TOFMS followed by TLD/PARAFAC is demonstrated for a plant metabolite sample. A region of GC × GC–TOFMS data from a complex natural sample of a derivatized metabolic plant extract from Huilmo (
Sisyrinchium striatum) was analyzed using TLD/PARAFAC, demonstrating the utility of this analytical technique on a natural sample containing overlapped analytes without selective ions or peak shape assumptions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>15595544</pmid><doi>10.1016/j.chroma.2004.06.110</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 2004-11, Vol.1056 (1), p.145-154 |
issn | 0021-9673 |
language | eng |
recordid | cdi_proquest_miscellaneous_67173246 |
source | ScienceDirect Freedom Collection |
subjects | Analytical chemistry Chemistry Chemometrics Chromatographic methods and physical methods associated with chromatography Deconvolution Evaluation Studies as Topic Exact sciences and technology Gas chromatographic methods Gas chromatography, comprehensive two-dimensional Gas Chromatography-Mass Spectrometry - methods Multivariate selectivity Net analyte signal Parallel factor analysis Plant Extracts - chemistry Sensitivity and Specificity |
title | Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20selectivity%20as%20a%20metric%20for%20evaluating%20comprehensive%20two-dimensional%20gas%20chromatography%E2%80%93time-of-flight%20mass%20spectrometry%20subjected%20to%20chemometric%20peak%20deconvolution&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Sinha,%20Amanda%20E.&rft.date=2004-11-12&rft.volume=1056&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0021-9673&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2004.06.110&rft_dat=%3Cproquest_cross%3E67173246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-89e4e10dd598a540e9bf0554ba138ad5c68028d107db18e72c19c0b4cf89f7a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67173246&rft_id=info:pmid/15595544&rfr_iscdi=true |