Loading…
Quantum dynamics in a camelback potential of a dc SQUID
We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two potential barriers. We realize this novel potential with a dc SQUID at near-zero current bias and flux bias near half a flux quantum. Escape out of the central well can occur via tunneling through either...
Saved in:
Published in: | Physical review letters 2009-03, Vol.102 (9), p.097004-097004, Article 097004 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two potential barriers. We realize this novel potential with a dc SQUID at near-zero current bias and flux bias near half a flux quantum. Escape out of the central well can occur via tunneling through either of the two barriers. We find good agreement with a generalized double-path macroscopic quantum tunneling theory. We also demonstrate an "optimal line" in current and flux bias along which the oscillator, which can be operated as a phase qubit, is insensitive to decoherence due to low-frequency current fluctuations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.102.097004 |