Loading…
Monitoring of glass derivatization with pulsed force mode atomic force microscopy
Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. Whi...
Saved in:
Published in: | Microscopy research and technique 2004-11, Vol.65 (4-5), p.246-251 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3 |
container_end_page | 251 |
container_issue | 4-5 |
container_start_page | 246 |
container_title | Microscopy research and technique |
container_volume | 65 |
creator | Ebner, Andreas Kienberger, Ferry Stroh, Cordula M. Gruber, Hermann J. Hinterdorfer, Peter |
description | Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jemt.20124 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67209334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67209334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</originalsourceid><addsrcrecordid>eNqFkEFPGzEQhS0EIjTthR-A9sSh0lKP1-tdHwsCQkWoqtLCzfJ6x2DYjVN70xB-PRuSwK09jGb09M2T3iNkH-gRUMq-PGDbHTEKjG-RPaCySHtVbi_vXKYS6O2AfIjxgVKAHPguGUAuMipKsUd-jP3EdT64yV3ibXLX6BiTGoP7qzv33I-fJHPX3SfTWROxTqwPBpPW15jozrfObBRngo_GTxcfyY7VPftpvYfk19np9ckovfx-fnHy9TI1PGM85QxKU8lKcCwQBOOmsNSKEguwgJRZIfNSaIs10EJWeVZzKXu14kbLHG02JIcr32nwf2YYO9W6aLBp9AT9LCpRMCqzjP8XhIJJWb6Cn1fgMkoMaNU0uFaHhQKqlk2rZdPqtekePli7zqoW63d0XW0PwAqYuwYX_7BS307H1xvTdPXjYodPbz86PPZxsiJXN1fn6uznsRjxY6p-Zy8Jc5iT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17299834</pqid></control><display><type>article</type><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><source>Wiley</source><creator>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</creator><creatorcontrib>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</creatorcontrib><description>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.20124</identifier><identifier>PMID: 15630686</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesiveness ; atomic force microscopy ; glass ; Glass - chemistry ; Microscopy, Atomic Force - methods ; poly(ethylene glycol) ; Polyethylene Glycols ; Silanes - chemistry ; silanization ; Surface Properties</subject><ispartof>Microscopy research and technique, 2004-11, Vol.65 (4-5), p.246-251</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>(c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</citedby><cites>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15630686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebner, Andreas</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><creatorcontrib>Stroh, Cordula M.</creatorcontrib><creatorcontrib>Gruber, Hermann J.</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><title>Microscopy research and technique</title><addtitle>Microsc. Res. Tech</addtitle><description>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</description><subject>Adhesiveness</subject><subject>atomic force microscopy</subject><subject>glass</subject><subject>Glass - chemistry</subject><subject>Microscopy, Atomic Force - methods</subject><subject>poly(ethylene glycol)</subject><subject>Polyethylene Glycols</subject><subject>Silanes - chemistry</subject><subject>silanization</subject><subject>Surface Properties</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPGzEQhS0EIjTthR-A9sSh0lKP1-tdHwsCQkWoqtLCzfJ6x2DYjVN70xB-PRuSwK09jGb09M2T3iNkH-gRUMq-PGDbHTEKjG-RPaCySHtVbi_vXKYS6O2AfIjxgVKAHPguGUAuMipKsUd-jP3EdT64yV3ibXLX6BiTGoP7qzv33I-fJHPX3SfTWROxTqwPBpPW15jozrfObBRngo_GTxcfyY7VPftpvYfk19np9ckovfx-fnHy9TI1PGM85QxKU8lKcCwQBOOmsNSKEguwgJRZIfNSaIs10EJWeVZzKXu14kbLHG02JIcr32nwf2YYO9W6aLBp9AT9LCpRMCqzjP8XhIJJWb6Cn1fgMkoMaNU0uFaHhQKqlk2rZdPqtekePli7zqoW63d0XW0PwAqYuwYX_7BS307H1xvTdPXjYodPbz86PPZxsiJXN1fn6uznsRjxY6p-Zy8Jc5iT</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Ebner, Andreas</creator><creator>Kienberger, Ferry</creator><creator>Stroh, Cordula M.</creator><creator>Gruber, Hermann J.</creator><creator>Hinterdorfer, Peter</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><author>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adhesiveness</topic><topic>atomic force microscopy</topic><topic>glass</topic><topic>Glass - chemistry</topic><topic>Microscopy, Atomic Force - methods</topic><topic>poly(ethylene glycol)</topic><topic>Polyethylene Glycols</topic><topic>Silanes - chemistry</topic><topic>silanization</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebner, Andreas</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><creatorcontrib>Stroh, Cordula M.</creatorcontrib><creatorcontrib>Gruber, Hermann J.</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebner, Andreas</au><au>Kienberger, Ferry</au><au>Stroh, Cordula M.</au><au>Gruber, Hermann J.</au><au>Hinterdorfer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc. Res. Tech</addtitle><date>2004-11</date><risdate>2004</risdate><volume>65</volume><issue>4-5</issue><spage>246</spage><epage>251</epage><pages>246-251</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15630686</pmid><doi>10.1002/jemt.20124</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2004-11, Vol.65 (4-5), p.246-251 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_67209334 |
source | Wiley |
subjects | Adhesiveness atomic force microscopy glass Glass - chemistry Microscopy, Atomic Force - methods poly(ethylene glycol) Polyethylene Glycols Silanes - chemistry silanization Surface Properties |
title | Monitoring of glass derivatization with pulsed force mode atomic force microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20glass%20derivatization%20with%20pulsed%20force%20mode%20atomic%20force%20microscopy&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Ebner,%20Andreas&rft.date=2004-11&rft.volume=65&rft.issue=4-5&rft.spage=246&rft.epage=251&rft.pages=246-251&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.20124&rft_dat=%3Cproquest_cross%3E67209334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17299834&rft_id=info:pmid/15630686&rfr_iscdi=true |