Loading…

Monitoring of glass derivatization with pulsed force mode atomic force microscopy

Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. Whi...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique 2004-11, Vol.65 (4-5), p.246-251
Main Authors: Ebner, Andreas, Kienberger, Ferry, Stroh, Cordula M., Gruber, Hermann J., Hinterdorfer, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3
cites cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3
container_end_page 251
container_issue 4-5
container_start_page 246
container_title Microscopy research and technique
container_volume 65
creator Ebner, Andreas
Kienberger, Ferry
Stroh, Cordula M.
Gruber, Hermann J.
Hinterdorfer, Peter
description Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jemt.20124
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67209334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67209334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</originalsourceid><addsrcrecordid>eNqFkEFPGzEQhS0EIjTthR-A9sSh0lKP1-tdHwsCQkWoqtLCzfJ6x2DYjVN70xB-PRuSwK09jGb09M2T3iNkH-gRUMq-PGDbHTEKjG-RPaCySHtVbi_vXKYS6O2AfIjxgVKAHPguGUAuMipKsUd-jP3EdT64yV3ibXLX6BiTGoP7qzv33I-fJHPX3SfTWROxTqwPBpPW15jozrfObBRngo_GTxcfyY7VPftpvYfk19np9ckovfx-fnHy9TI1PGM85QxKU8lKcCwQBOOmsNSKEguwgJRZIfNSaIs10EJWeVZzKXu14kbLHG02JIcr32nwf2YYO9W6aLBp9AT9LCpRMCqzjP8XhIJJWb6Cn1fgMkoMaNU0uFaHhQKqlk2rZdPqtekePli7zqoW63d0XW0PwAqYuwYX_7BS307H1xvTdPXjYodPbz86PPZxsiJXN1fn6uznsRjxY6p-Zy8Jc5iT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17299834</pqid></control><display><type>article</type><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><source>Wiley</source><creator>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</creator><creatorcontrib>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</creatorcontrib><description>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.20124</identifier><identifier>PMID: 15630686</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adhesiveness ; atomic force microscopy ; glass ; Glass - chemistry ; Microscopy, Atomic Force - methods ; poly(ethylene glycol) ; Polyethylene Glycols ; Silanes - chemistry ; silanization ; Surface Properties</subject><ispartof>Microscopy research and technique, 2004-11, Vol.65 (4-5), p.246-251</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><rights>(c) 2005 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</citedby><cites>FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15630686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebner, Andreas</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><creatorcontrib>Stroh, Cordula M.</creatorcontrib><creatorcontrib>Gruber, Hermann J.</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><title>Microscopy research and technique</title><addtitle>Microsc. Res. Tech</addtitle><description>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</description><subject>Adhesiveness</subject><subject>atomic force microscopy</subject><subject>glass</subject><subject>Glass - chemistry</subject><subject>Microscopy, Atomic Force - methods</subject><subject>poly(ethylene glycol)</subject><subject>Polyethylene Glycols</subject><subject>Silanes - chemistry</subject><subject>silanization</subject><subject>Surface Properties</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPGzEQhS0EIjTthR-A9sSh0lKP1-tdHwsCQkWoqtLCzfJ6x2DYjVN70xB-PRuSwK09jGb09M2T3iNkH-gRUMq-PGDbHTEKjG-RPaCySHtVbi_vXKYS6O2AfIjxgVKAHPguGUAuMipKsUd-jP3EdT64yV3ibXLX6BiTGoP7qzv33I-fJHPX3SfTWROxTqwPBpPW15jozrfObBRngo_GTxcfyY7VPftpvYfk19np9ckovfx-fnHy9TI1PGM85QxKU8lKcCwQBOOmsNSKEguwgJRZIfNSaIs10EJWeVZzKXu14kbLHG02JIcr32nwf2YYO9W6aLBp9AT9LCpRMCqzjP8XhIJJWb6Cn1fgMkoMaNU0uFaHhQKqlk2rZdPqtekePli7zqoW63d0XW0PwAqYuwYX_7BS307H1xvTdPXjYodPbz86PPZxsiJXN1fn6uznsRjxY6p-Zy8Jc5iT</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Ebner, Andreas</creator><creator>Kienberger, Ferry</creator><creator>Stroh, Cordula M.</creator><creator>Gruber, Hermann J.</creator><creator>Hinterdorfer, Peter</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</title><author>Ebner, Andreas ; Kienberger, Ferry ; Stroh, Cordula M. ; Gruber, Hermann J. ; Hinterdorfer, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adhesiveness</topic><topic>atomic force microscopy</topic><topic>glass</topic><topic>Glass - chemistry</topic><topic>Microscopy, Atomic Force - methods</topic><topic>poly(ethylene glycol)</topic><topic>Polyethylene Glycols</topic><topic>Silanes - chemistry</topic><topic>silanization</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebner, Andreas</creatorcontrib><creatorcontrib>Kienberger, Ferry</creatorcontrib><creatorcontrib>Stroh, Cordula M.</creatorcontrib><creatorcontrib>Gruber, Hermann J.</creatorcontrib><creatorcontrib>Hinterdorfer, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebner, Andreas</au><au>Kienberger, Ferry</au><au>Stroh, Cordula M.</au><au>Gruber, Hermann J.</au><au>Hinterdorfer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring of glass derivatization with pulsed force mode atomic force microscopy</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc. Res. Tech</addtitle><date>2004-11</date><risdate>2004</risdate><volume>65</volume><issue>4-5</issue><spage>246</spage><epage>251</epage><pages>246-251</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Non‐specific adsorption of proteins at solid/liquid interfaces is a major problem in the use of synthetic biomaterials and in ultrasensitive detection methods. Grafting surfaces with a dense layer of poly(ethylene glycol) (PEG) or other polymers is a most widely used strategy to solve this task. While such modified surfaces have been characterized by their ability to resist protein adsorption, the polymer layers themselves have rarely been studied in fine detail. Atomic force microscopy (AFM) using the pulsed force mode (PFM), is an ideal technique to investigate structural features and physiochemical properties of surfaces because topology and adhesion are simultaneously detected with high lateral resolution. In the present study, PFM‐AFM was applied to thoroughly characterize different stages of glass derivatization, up to the formation of a dense PEG layer. Lateral inhomogeneities in topology and/or adhesion were observed at all stages before PEG attachment. The covalently bound PEG, however, was seen to form a densely packed monolayer with maximal thickness, smooth surface, and weak adhesion. Thus, PFM‐AFM appears to be a valuable tool for the characterization of protein‐repelling surfaces in solution. Microsc. Res. Tech. 65:246–251, 2004. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15630686</pmid><doi>10.1002/jemt.20124</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2004-11, Vol.65 (4-5), p.246-251
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_67209334
source Wiley
subjects Adhesiveness
atomic force microscopy
glass
Glass - chemistry
Microscopy, Atomic Force - methods
poly(ethylene glycol)
Polyethylene Glycols
Silanes - chemistry
silanization
Surface Properties
title Monitoring of glass derivatization with pulsed force mode atomic force microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20of%20glass%20derivatization%20with%20pulsed%20force%20mode%20atomic%20force%20microscopy&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Ebner,%20Andreas&rft.date=2004-11&rft.volume=65&rft.issue=4-5&rft.spage=246&rft.epage=251&rft.pages=246-251&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.20124&rft_dat=%3Cproquest_cross%3E67209334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4324-4218cb9b64e7e1624c7f0f68e71f1e02f69586afed1079b53d4992f6b4ca95ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17299834&rft_id=info:pmid/15630686&rfr_iscdi=true