Loading…
Aviglycine and propargylglycine inhibit conidial germination and mycelial growth of Fusarium oxysporumf. sp. luffae
Two inhibitors, aviglycine and propargylglycine, were tested for their ability to suppress methionine synthesis thus inhibit conidial germination and mycelial growth of Czapek-Dox liquid medium grown Fusarium oxysporum f. sp. luffaemuM. The linear inhibition range for mycelial growth was about 7.6-7...
Saved in:
Published in: | Mycopathologia (1975) 2004-10, Vol.158 (3), p.369-375 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two inhibitors, aviglycine and propargylglycine, were tested for their ability to suppress methionine synthesis thus inhibit conidial germination and mycelial growth of Czapek-Dox liquid medium grown Fusarium oxysporum f. sp. luffaemuM. The linear inhibition range for mycelial growth was about 7.6-762.9 microM. Although aviglycine did not completely inhibit both conidial germination and mycelial growth, it showed significant inhibitory effect at 1.5 microM. The inhibition range for propargylglycine against conidial germination and mycelial growth were from 0.08 to 8841 microM and from 0.8 to 884.1 microM, respectively. Propargylglycine inhibited conidial germination and mycelial growth at a concentration of 8841 muM. The EC(50) values of aviglycine were 1 microM for conidial growth and 122 microM for mycelial growth, and the EC(50) values of propargylglycine were 47.7 microM for conidial growth and 55.6 muM for mycelial growth. Supplement of methionine released inhibition of aviglycine or propargylglycine to conidial germination. In addition, a mixture of aviglycine (1.5 microM) and propargylglycine (8841 microM) showed additive inhibitive effect than applied alone on 10 isolates. From these results, both aviglycine and propargylglycine exhibited inhibitory activity, and suggest that they can provide potential tools to design novel fungicide against fungal pathogens. |
---|---|
ISSN: | 0301-486X 1573-0832 |
DOI: | 10.1007/s11046-004-2225-6 |