Loading…
Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty
Summary Reasons for performing study: Subjective neurological evaluation in horses is prone to bias. An objective method of spinal ataxia detection is not subject to these limitations and could be of use in equine practice and research. Hypothesis: Kinematic data in the walking horse can differentia...
Saved in:
Published in: | Equine veterinary journal 2004-12, Vol.36 (8), p.712-717 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873 |
---|---|
cites | cdi_FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873 |
container_end_page | 717 |
container_issue | 8 |
container_start_page | 712 |
container_title | Equine veterinary journal |
container_volume | 36 |
creator | Keegan, K.G Arafat, S Skubic, M Wilson, D.A Kramer, J Messer, N.M Johnson, P.J O'Brien, D.P Johnson, G |
description | Summary
Reasons for performing study: Subjective neurological evaluation in horses is prone to bias. An objective method of spinal ataxia detection is not subject to these limitations and could be of use in equine practice and research.
Hypothesis: Kinematic data in the walking horse can differentiate normal and spinal ataxic horses.
Methods: Twelve normal and 12 spinal ataxic horses were evaluated by kinematic analysis walking on a treadmill. Each body position signal was reduced to a scalar measure of uncertainty then fuzzy clustered into normal or ataxic groups. Correct classification percentage (CCP) was then calculated using membership values of each horse in the 2 groups. Subsequently, a guided search for measure combinations with high CCP was performed.
Results: Eight measures of body position resulted in CCP≥70%. Several combinations of 4–5 measures resulted in 100% CCP. All combinations with 100% CCP could be obtained with one body marker on the back measuring vertical and horizontal movement and one body marker each on the right fore‐ and hindlimb measuring vertical movement.
Conclusions and potential relevance: Kinematic gait analysis using simple body marker combinations can be used objectively to detect spinal ataxia in horses. |
doi_str_mv | 10.2746/0425164044848163 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67219220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67219220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCnRP4xC3UmXHs-Ii236qKxFLgZnkTuxiy8WInoumvx0tWIPWCfLA08zyvRi8hr0r2DiQXx4xDVQrOOK95XQp8QhaQZwUiE0_JYrcu8p4fkucpfWcMETg8I4dlJfJjsCBfT-xgm8GHngZH09b3pqNmMPfeUN_TbyEmm-iYfH9H3fjwMNGmG9Ng426QjXVoJ7oNyf-JGPvGxsH4fphekANnumRf7v8jcnt2-ml5UVx_OL9cvr8umnx2VTjphGm5E22tOCJKrpjinNuGqQrACa4Mq7gDqdYCW9OKFqHG2kiJWNcSj8jbOXcbw8_RpkFvfGps15nehjFpIaFUACyDbAabGFKK1ult9BsTJ10yvWtTP24zK6_32eN6Y9t_wr6-DPAZ-OU7O_03UJ9-vgJWZa2YNZ-bvP-rmfgjn4uy0l9uzvUSlldn8HGlV5l_M_POBG3uok_6dgWsRMZULStV4m8pTJX1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67219220</pqid></control><display><type>article</type><title>Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Keegan, K.G ; Arafat, S ; Skubic, M ; Wilson, D.A ; Kramer, J ; Messer, N.M ; Johnson, P.J ; O'Brien, D.P ; Johnson, G</creator><creatorcontrib>Keegan, K.G ; Arafat, S ; Skubic, M ; Wilson, D.A ; Kramer, J ; Messer, N.M ; Johnson, P.J ; O'Brien, D.P ; Johnson, G</creatorcontrib><description>Summary
Reasons for performing study: Subjective neurological evaluation in horses is prone to bias. An objective method of spinal ataxia detection is not subject to these limitations and could be of use in equine practice and research.
Hypothesis: Kinematic data in the walking horse can differentiate normal and spinal ataxic horses.
Methods: Twelve normal and 12 spinal ataxic horses were evaluated by kinematic analysis walking on a treadmill. Each body position signal was reduced to a scalar measure of uncertainty then fuzzy clustered into normal or ataxic groups. Correct classification percentage (CCP) was then calculated using membership values of each horse in the 2 groups. Subsequently, a guided search for measure combinations with high CCP was performed.
Results: Eight measures of body position resulted in CCP≥70%. Several combinations of 4–5 measures resulted in 100% CCP. All combinations with 100% CCP could be obtained with one body marker on the back measuring vertical and horizontal movement and one body marker each on the right fore‐ and hindlimb measuring vertical movement.
Conclusions and potential relevance: Kinematic gait analysis using simple body marker combinations can be used objectively to detect spinal ataxia in horses.</description><identifier>ISSN: 0425-1644</identifier><identifier>EISSN: 2042-3306</identifier><identifier>DOI: 10.2746/0425164044848163</identifier><identifier>PMID: 15656502</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Animals ; ataxia (disorder) ; Biomechanical Phenomena ; Case-Control Studies ; classification ; Cluster Analysis ; disease detection ; exercise test ; Exercise Test - veterinary ; fuzzy c-means ; Fuzzy Logic ; gait ; Gait Ataxia - classification ; Gait Ataxia - diagnosis ; Gait Ataxia - veterinary ; horse ; horse diseases ; Horse Diseases - classification ; Horse Diseases - diagnosis ; horses ; Horses - physiology ; kinematics ; signal uncertainty ; spinal ataxia ; spine ; walking</subject><ispartof>Equine veterinary journal, 2004-12, Vol.36 (8), p.712-717</ispartof><rights>2004 EVJ Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873</citedby><cites>FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15656502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keegan, K.G</creatorcontrib><creatorcontrib>Arafat, S</creatorcontrib><creatorcontrib>Skubic, M</creatorcontrib><creatorcontrib>Wilson, D.A</creatorcontrib><creatorcontrib>Kramer, J</creatorcontrib><creatorcontrib>Messer, N.M</creatorcontrib><creatorcontrib>Johnson, P.J</creatorcontrib><creatorcontrib>O'Brien, D.P</creatorcontrib><creatorcontrib>Johnson, G</creatorcontrib><title>Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty</title><title>Equine veterinary journal</title><addtitle>Equine Vet J</addtitle><description>Summary
Reasons for performing study: Subjective neurological evaluation in horses is prone to bias. An objective method of spinal ataxia detection is not subject to these limitations and could be of use in equine practice and research.
Hypothesis: Kinematic data in the walking horse can differentiate normal and spinal ataxic horses.
Methods: Twelve normal and 12 spinal ataxic horses were evaluated by kinematic analysis walking on a treadmill. Each body position signal was reduced to a scalar measure of uncertainty then fuzzy clustered into normal or ataxic groups. Correct classification percentage (CCP) was then calculated using membership values of each horse in the 2 groups. Subsequently, a guided search for measure combinations with high CCP was performed.
Results: Eight measures of body position resulted in CCP≥70%. Several combinations of 4–5 measures resulted in 100% CCP. All combinations with 100% CCP could be obtained with one body marker on the back measuring vertical and horizontal movement and one body marker each on the right fore‐ and hindlimb measuring vertical movement.
Conclusions and potential relevance: Kinematic gait analysis using simple body marker combinations can be used objectively to detect spinal ataxia in horses.</description><subject>Algorithms</subject><subject>Animals</subject><subject>ataxia (disorder)</subject><subject>Biomechanical Phenomena</subject><subject>Case-Control Studies</subject><subject>classification</subject><subject>Cluster Analysis</subject><subject>disease detection</subject><subject>exercise test</subject><subject>Exercise Test - veterinary</subject><subject>fuzzy c-means</subject><subject>Fuzzy Logic</subject><subject>gait</subject><subject>Gait Ataxia - classification</subject><subject>Gait Ataxia - diagnosis</subject><subject>Gait Ataxia - veterinary</subject><subject>horse</subject><subject>horse diseases</subject><subject>Horse Diseases - classification</subject><subject>Horse Diseases - diagnosis</subject><subject>horses</subject><subject>Horses - physiology</subject><subject>kinematics</subject><subject>signal uncertainty</subject><subject>spinal ataxia</subject><subject>spine</subject><subject>walking</subject><issn>0425-1644</issn><issn>2042-3306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi1ERZfCnRP4xC3UmXHs-Ii236qKxFLgZnkTuxiy8WInoumvx0tWIPWCfLA08zyvRi8hr0r2DiQXx4xDVQrOOK95XQp8QhaQZwUiE0_JYrcu8p4fkucpfWcMETg8I4dlJfJjsCBfT-xgm8GHngZH09b3pqNmMPfeUN_TbyEmm-iYfH9H3fjwMNGmG9Ng426QjXVoJ7oNyf-JGPvGxsH4fphekANnumRf7v8jcnt2-ml5UVx_OL9cvr8umnx2VTjphGm5E22tOCJKrpjinNuGqQrACa4Mq7gDqdYCW9OKFqHG2kiJWNcSj8jbOXcbw8_RpkFvfGps15nehjFpIaFUACyDbAabGFKK1ult9BsTJ10yvWtTP24zK6_32eN6Y9t_wr6-DPAZ-OU7O_03UJ9-vgJWZa2YNZ-bvP-rmfgjn4uy0l9uzvUSlldn8HGlV5l_M_POBG3uok_6dgWsRMZULStV4m8pTJX1</recordid><startdate>200412</startdate><enddate>200412</enddate><creator>Keegan, K.G</creator><creator>Arafat, S</creator><creator>Skubic, M</creator><creator>Wilson, D.A</creator><creator>Kramer, J</creator><creator>Messer, N.M</creator><creator>Johnson, P.J</creator><creator>O'Brien, D.P</creator><creator>Johnson, G</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200412</creationdate><title>Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty</title><author>Keegan, K.G ; Arafat, S ; Skubic, M ; Wilson, D.A ; Kramer, J ; Messer, N.M ; Johnson, P.J ; O'Brien, D.P ; Johnson, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>ataxia (disorder)</topic><topic>Biomechanical Phenomena</topic><topic>Case-Control Studies</topic><topic>classification</topic><topic>Cluster Analysis</topic><topic>disease detection</topic><topic>exercise test</topic><topic>Exercise Test - veterinary</topic><topic>fuzzy c-means</topic><topic>Fuzzy Logic</topic><topic>gait</topic><topic>Gait Ataxia - classification</topic><topic>Gait Ataxia - diagnosis</topic><topic>Gait Ataxia - veterinary</topic><topic>horse</topic><topic>horse diseases</topic><topic>Horse Diseases - classification</topic><topic>Horse Diseases - diagnosis</topic><topic>horses</topic><topic>Horses - physiology</topic><topic>kinematics</topic><topic>signal uncertainty</topic><topic>spinal ataxia</topic><topic>spine</topic><topic>walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keegan, K.G</creatorcontrib><creatorcontrib>Arafat, S</creatorcontrib><creatorcontrib>Skubic, M</creatorcontrib><creatorcontrib>Wilson, D.A</creatorcontrib><creatorcontrib>Kramer, J</creatorcontrib><creatorcontrib>Messer, N.M</creatorcontrib><creatorcontrib>Johnson, P.J</creatorcontrib><creatorcontrib>O'Brien, D.P</creatorcontrib><creatorcontrib>Johnson, G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Equine veterinary journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keegan, K.G</au><au>Arafat, S</au><au>Skubic, M</au><au>Wilson, D.A</au><au>Kramer, J</au><au>Messer, N.M</au><au>Johnson, P.J</au><au>O'Brien, D.P</au><au>Johnson, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty</atitle><jtitle>Equine veterinary journal</jtitle><addtitle>Equine Vet J</addtitle><date>2004-12</date><risdate>2004</risdate><volume>36</volume><issue>8</issue><spage>712</spage><epage>717</epage><pages>712-717</pages><issn>0425-1644</issn><eissn>2042-3306</eissn><abstract>Summary
Reasons for performing study: Subjective neurological evaluation in horses is prone to bias. An objective method of spinal ataxia detection is not subject to these limitations and could be of use in equine practice and research.
Hypothesis: Kinematic data in the walking horse can differentiate normal and spinal ataxic horses.
Methods: Twelve normal and 12 spinal ataxic horses were evaluated by kinematic analysis walking on a treadmill. Each body position signal was reduced to a scalar measure of uncertainty then fuzzy clustered into normal or ataxic groups. Correct classification percentage (CCP) was then calculated using membership values of each horse in the 2 groups. Subsequently, a guided search for measure combinations with high CCP was performed.
Results: Eight measures of body position resulted in CCP≥70%. Several combinations of 4–5 measures resulted in 100% CCP. All combinations with 100% CCP could be obtained with one body marker on the back measuring vertical and horizontal movement and one body marker each on the right fore‐ and hindlimb measuring vertical movement.
Conclusions and potential relevance: Kinematic gait analysis using simple body marker combinations can be used objectively to detect spinal ataxia in horses.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15656502</pmid><doi>10.2746/0425164044848163</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0425-1644 |
ispartof | Equine veterinary journal, 2004-12, Vol.36 (8), p.712-717 |
issn | 0425-1644 2042-3306 |
language | eng |
recordid | cdi_proquest_miscellaneous_67219220 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Animals ataxia (disorder) Biomechanical Phenomena Case-Control Studies classification Cluster Analysis disease detection exercise test Exercise Test - veterinary fuzzy c-means Fuzzy Logic gait Gait Ataxia - classification Gait Ataxia - diagnosis Gait Ataxia - veterinary horse horse diseases Horse Diseases - classification Horse Diseases - diagnosis horses Horses - physiology kinematics signal uncertainty spinal ataxia spine walking |
title | Detection of spinal ataxia in horses using fuzzy clustering of body position uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20spinal%20ataxia%20in%20horses%20using%20fuzzy%20clustering%20of%20body%20position%20uncertainty&rft.jtitle=Equine%20veterinary%20journal&rft.au=Keegan,%20K.G&rft.date=2004-12&rft.volume=36&rft.issue=8&rft.spage=712&rft.epage=717&rft.pages=712-717&rft.issn=0425-1644&rft.eissn=2042-3306&rft_id=info:doi/10.2746/0425164044848163&rft_dat=%3Cproquest_cross%3E67219220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4045-f7f6ad4f6d89433374909444ec09522f649a054f279b63dad6d32838a77338873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67219220&rft_id=info:pmid/15656502&rfr_iscdi=true |