Loading…

Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles

Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by ther...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2009-05, Vol.113 (19), p.7033-7039
Main Authors: Roca, Alejandro G, Veintemillas-Verdaguer, Sabino, Port, Marc, Robic, Caroline, Serna, Carlos J, Morales, Maria P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3
cites cdi_FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3
container_end_page 7039
container_issue 19
container_start_page 7033
container_title The journal of physical chemistry. B
container_volume 113
creator Roca, Alejandro G
Veintemillas-Verdaguer, Sabino
Port, Marc
Robic, Caroline
Serna, Carlos J
Morales, Maria P
description Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by thermal decomposition of Fe(acac)3 in different organic solvents and transformed to hydrophilic by changing oleic acid for dimercaptosuccinic acid (DMSA). A final treatment in alkaline water was critical to make the suspension stable at pH 7 with ξ-potential values of −45 mV and hydrodynamic sizes as low as 50 nm. Samples showed superparamagnetic behavior at room temperature, which is an important parameter for biomedical applications. Susceptibility increased with both particle and aggregate size, and for particles larger than 9 nm, the aggregate size was the key factor controlling the susceptibility. Relaxivity values followed the same trend as the suspension susceptibilities, indicating that the aggregate size is an important factor above a certain particle size governing the proton relaxation times. The highest relaxivity value, r 2 = 317 s−1 mM−1, much higher than those for commercial contrast agents with similar hydrodynamic size, was obtained for a suspension consisting of 9 nm particles and 70 nm of hydrodynamic size, and it was assigned to the higher particle crystallinity in comparison to particles prepared by coprecipitation. Therefore, it can be concluded that in addition to the sample crystallinity, both particle size and aggregate size should be considered in order to explain the magnetic and relaxivity values of a suspension.
doi_str_mv 10.1021/jp807820s
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67230600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67230600</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3</originalsourceid><addsrcrecordid>eNptkMFO3DAQhq2KChbKoS-AfAGJw4LtJI59XFbAVgLa0vYcTZxxyCobB9uRun0GHpqsdkU5cLDGh-__RvMT8pWzC84Ev1z2iuVKsPCJTHgm2HR8-d7uLzmTB-QwhCVjIhNK7pMDrpNcaZVOyMu1tWgidZY-QOd68LExLVLoKjqra481RKS_mn9IXUfjE9JHbOGvW2H0jaE_vOtxjGDYGO4f6dx10UOIYxi7GOgVBKw20UVTP9GfA7RNXNN7qDuMzWh-vzR8IZ8ttAGPd_OI_Lm5_j1fTO--336bz-6mkOQ6TqWymqdllmYKUjQsq7RIRC5NySqjGShpRSV0KXOTWANWK5YiL7nkeYqZhuSInG29vXfPA4ZYrJpgsG2hQzeEQuYiYZKxETzfgsa7EDzaovfNCvy64KzYVF-8VT-yJzvpUK6w-k_uuh6B0y0AJhRLN_huvPED0SsvPYwS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67230600</pqid></control><display><type>article</type><title>Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Roca, Alejandro G ; Veintemillas-Verdaguer, Sabino ; Port, Marc ; Robic, Caroline ; Serna, Carlos J ; Morales, Maria P</creator><creatorcontrib>Roca, Alejandro G ; Veintemillas-Verdaguer, Sabino ; Port, Marc ; Robic, Caroline ; Serna, Carlos J ; Morales, Maria P</creatorcontrib><description>Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by thermal decomposition of Fe(acac)3 in different organic solvents and transformed to hydrophilic by changing oleic acid for dimercaptosuccinic acid (DMSA). A final treatment in alkaline water was critical to make the suspension stable at pH 7 with ξ-potential values of −45 mV and hydrodynamic sizes as low as 50 nm. Samples showed superparamagnetic behavior at room temperature, which is an important parameter for biomedical applications. Susceptibility increased with both particle and aggregate size, and for particles larger than 9 nm, the aggregate size was the key factor controlling the susceptibility. Relaxivity values followed the same trend as the suspension susceptibilities, indicating that the aggregate size is an important factor above a certain particle size governing the proton relaxation times. The highest relaxivity value, r 2 = 317 s−1 mM−1, much higher than those for commercial contrast agents with similar hydrodynamic size, was obtained for a suspension consisting of 9 nm particles and 70 nm of hydrodynamic size, and it was assigned to the higher particle crystallinity in comparison to particles prepared by coprecipitation. Therefore, it can be concluded that in addition to the sample crystallinity, both particle size and aggregate size should be considered in order to explain the magnetic and relaxivity values of a suspension.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp807820s</identifier><identifier>PMID: 19378984</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysical Chemistry</subject><ispartof>The journal of physical chemistry. B, 2009-05, Vol.113 (19), p.7033-7039</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3</citedby><cites>FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19378984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roca, Alejandro G</creatorcontrib><creatorcontrib>Veintemillas-Verdaguer, Sabino</creatorcontrib><creatorcontrib>Port, Marc</creatorcontrib><creatorcontrib>Robic, Caroline</creatorcontrib><creatorcontrib>Serna, Carlos J</creatorcontrib><creatorcontrib>Morales, Maria P</creatorcontrib><title>Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by thermal decomposition of Fe(acac)3 in different organic solvents and transformed to hydrophilic by changing oleic acid for dimercaptosuccinic acid (DMSA). A final treatment in alkaline water was critical to make the suspension stable at pH 7 with ξ-potential values of −45 mV and hydrodynamic sizes as low as 50 nm. Samples showed superparamagnetic behavior at room temperature, which is an important parameter for biomedical applications. Susceptibility increased with both particle and aggregate size, and for particles larger than 9 nm, the aggregate size was the key factor controlling the susceptibility. Relaxivity values followed the same trend as the suspension susceptibilities, indicating that the aggregate size is an important factor above a certain particle size governing the proton relaxation times. The highest relaxivity value, r 2 = 317 s−1 mM−1, much higher than those for commercial contrast agents with similar hydrodynamic size, was obtained for a suspension consisting of 9 nm particles and 70 nm of hydrodynamic size, and it was assigned to the higher particle crystallinity in comparison to particles prepared by coprecipitation. Therefore, it can be concluded that in addition to the sample crystallinity, both particle size and aggregate size should be considered in order to explain the magnetic and relaxivity values of a suspension.</description><subject>B: Biophysical Chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQhq2KChbKoS-AfAGJw4LtJI59XFbAVgLa0vYcTZxxyCobB9uRun0GHpqsdkU5cLDGh-__RvMT8pWzC84Ev1z2iuVKsPCJTHgm2HR8-d7uLzmTB-QwhCVjIhNK7pMDrpNcaZVOyMu1tWgidZY-QOd68LExLVLoKjqra481RKS_mn9IXUfjE9JHbOGvW2H0jaE_vOtxjGDYGO4f6dx10UOIYxi7GOgVBKw20UVTP9GfA7RNXNN7qDuMzWh-vzR8IZ8ttAGPd_OI_Lm5_j1fTO--336bz-6mkOQ6TqWymqdllmYKUjQsq7RIRC5NySqjGShpRSV0KXOTWANWK5YiL7nkeYqZhuSInG29vXfPA4ZYrJpgsG2hQzeEQuYiYZKxETzfgsa7EDzaovfNCvy64KzYVF-8VT-yJzvpUK6w-k_uuh6B0y0AJhRLN_huvPED0SsvPYwS</recordid><startdate>20090514</startdate><enddate>20090514</enddate><creator>Roca, Alejandro G</creator><creator>Veintemillas-Verdaguer, Sabino</creator><creator>Port, Marc</creator><creator>Robic, Caroline</creator><creator>Serna, Carlos J</creator><creator>Morales, Maria P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090514</creationdate><title>Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles</title><author>Roca, Alejandro G ; Veintemillas-Verdaguer, Sabino ; Port, Marc ; Robic, Caroline ; Serna, Carlos J ; Morales, Maria P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B: Biophysical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roca, Alejandro G</creatorcontrib><creatorcontrib>Veintemillas-Verdaguer, Sabino</creatorcontrib><creatorcontrib>Port, Marc</creatorcontrib><creatorcontrib>Robic, Caroline</creatorcontrib><creatorcontrib>Serna, Carlos J</creatorcontrib><creatorcontrib>Morales, Maria P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roca, Alejandro G</au><au>Veintemillas-Verdaguer, Sabino</au><au>Port, Marc</au><au>Robic, Caroline</au><au>Serna, Carlos J</au><au>Morales, Maria P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2009-05-14</date><risdate>2009</risdate><volume>113</volume><issue>19</issue><spage>7033</spage><epage>7039</epage><pages>7033-7039</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Colloidal dispersions of monodispersed and high-crystalline magnetite nanoparticles have been used to establish a relationship between magnetic properties and magnetic resonance (MR) relaxometric parameters in vitro. Magnetite nanoparticles with diameters between 4 and 14 nm were synthesized by thermal decomposition of Fe(acac)3 in different organic solvents and transformed to hydrophilic by changing oleic acid for dimercaptosuccinic acid (DMSA). A final treatment in alkaline water was critical to make the suspension stable at pH 7 with ξ-potential values of −45 mV and hydrodynamic sizes as low as 50 nm. Samples showed superparamagnetic behavior at room temperature, which is an important parameter for biomedical applications. Susceptibility increased with both particle and aggregate size, and for particles larger than 9 nm, the aggregate size was the key factor controlling the susceptibility. Relaxivity values followed the same trend as the suspension susceptibilities, indicating that the aggregate size is an important factor above a certain particle size governing the proton relaxation times. The highest relaxivity value, r 2 = 317 s−1 mM−1, much higher than those for commercial contrast agents with similar hydrodynamic size, was obtained for a suspension consisting of 9 nm particles and 70 nm of hydrodynamic size, and it was assigned to the higher particle crystallinity in comparison to particles prepared by coprecipitation. Therefore, it can be concluded that in addition to the sample crystallinity, both particle size and aggregate size should be considered in order to explain the magnetic and relaxivity values of a suspension.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19378984</pmid><doi>10.1021/jp807820s</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2009-05, Vol.113 (19), p.7033-7039
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_67230600
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects B: Biophysical Chemistry
title Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nanoparticle%20and%20Aggregate%20Size%20on%20the%20Relaxometric%20Properties%20of%20MR%20Contrast%20Agents%20Based%20on%20High%20Quality%20Magnetite%20Nanoparticles&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Roca,%20Alejandro%20G&rft.date=2009-05-14&rft.volume=113&rft.issue=19&rft.spage=7033&rft.epage=7039&rft.pages=7033-7039&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp807820s&rft_dat=%3Cproquest_cross%3E67230600%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-68f914b5458a4ec05d923276cb0dc90a86f2d29b67c3fcaf9804e1b16174e59a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67230600&rft_id=info:pmid/19378984&rfr_iscdi=true