Loading…
Stable Electroenzymatic Processes by Catalyst Separation
Division of labour: The rapid enzyme inactivation in the electroenzymatic synthesis of chiral alcohols has been the main obstacle for synthetic applications during the last two decades. The reasons for this inactivation have now been elucidated. The development of a water‐soluble polymeric mediator...
Saved in:
Published in: | Chemistry : a European journal 2009-01, Vol.15 (20), p.4998-5001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Division of labour: The rapid enzyme inactivation in the electroenzymatic synthesis of chiral alcohols has been the main obstacle for synthetic applications during the last two decades. The reasons for this inactivation have now been elucidated. The development of a water‐soluble polymeric mediator and the spatial separation of enzyme and mediator led to the first stable process and significantly improved catalyst utilisations (see picture).
Division of labour: The rapid enzyme inactivation in the electroenzymatic synthesis of chiral alcohols has been the main obstacle for synthetic applications during the last two decades. The reasons for this inactivation have now been elucidated. The development of a water‐soluble polymeric mediator and the spatial separation of enzyme and mediator led to the first stable process and significantly improved catalyst utilisations (see picture). |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.200900219 |