Loading…
Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces
The wetting behavior of hydrophobic, microstructured surfaces containing arrays of pillars or holes has been investigated. The size of the surface features was fixed (20 μm), while their separation was varied to adjust the area fraction (0−80%). The wettability of structured surfaces for liquids res...
Saved in:
Published in: | Langmuir 2009-05, Vol.25 (10), p.5655-5660 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023 |
---|---|
cites | cdi_FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023 |
container_end_page | 5660 |
container_issue | 10 |
container_start_page | 5655 |
container_title | Langmuir |
container_volume | 25 |
creator | Priest, Craig Albrecht, Trent W. J Sedev, Rossen Ralston, John |
description | The wetting behavior of hydrophobic, microstructured surfaces containing arrays of pillars or holes has been investigated. The size of the surface features was fixed (20 μm), while their separation was varied to adjust the area fraction (0−80%). The wettability of structured surfaces for liquids resting in the Cassie state is strongly dependent on the continuity of the solid component. Microstructured square pillars and holes showed distinct, asymmetric wetting hysteresis, consistent with our previous observations on flat, chemically heterogeneous surfaces. Furthermore, clear trends for the magnitude of contact angle hysteresis versus area fraction for the two types of microstructured surfaces are evident. The pinning energy associated with these surface features is estimated. |
doi_str_mv | 10.1021/la804246a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67241643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67241643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgWgpDLwA6gISQ8C3OPFYVYUiFTEAYoxs5wRS5VJ8kqFvj6tGhQEvlnU-Hf_6Cblk9I5Rzu4rk1LJpTJHZMxiTqM45ckxGdNEiiiRSozIGeKaUqqF1KdkxDRPYqbVmCxmuK1r6Hzpph_QdWXzOV1usQMPWOK0bcIr9-3mq7VBPJfOt9j53nW9h3z62vvCOMBzclKYCuFiuCfk_WHxNl9Gq5fHp_lsFRkhRRcBhFyFjjUIm8c8taC5zG2hLGVJypTSJkxCNkt1kehwQFmextrmgjvKxYTc7PdufPvdA3ZZXaKDqjINtD1mKuGSKSkCvN3DXV70UGQbX9bGbzNGs11n2aGzYK-Gpb2tIf-VQ0kBXA_AoDNV4U3jSjw4zuIQX_5xxmG2bnvfhC7--fAHDB1_vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67241643</pqid></control><display><type>article</type><title>Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Priest, Craig ; Albrecht, Trent W. J ; Sedev, Rossen ; Ralston, John</creator><creatorcontrib>Priest, Craig ; Albrecht, Trent W. J ; Sedev, Rossen ; Ralston, John</creatorcontrib><description>The wetting behavior of hydrophobic, microstructured surfaces containing arrays of pillars or holes has been investigated. The size of the surface features was fixed (20 μm), while their separation was varied to adjust the area fraction (0−80%). The wettability of structured surfaces for liquids resting in the Cassie state is strongly dependent on the continuity of the solid component. Microstructured square pillars and holes showed distinct, asymmetric wetting hysteresis, consistent with our previous observations on flat, chemically heterogeneous surfaces. Furthermore, clear trends for the magnitude of contact angle hysteresis versus area fraction for the two types of microstructured surfaces are evident. The pinning energy associated with these surface features is estimated.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la804246a</identifier><identifier>PMID: 19275196</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Surface physical chemistry</subject><ispartof>Langmuir, 2009-05, Vol.25 (10), p.5655-5660</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023</citedby><cites>FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21501746$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19275196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Priest, Craig</creatorcontrib><creatorcontrib>Albrecht, Trent W. J</creatorcontrib><creatorcontrib>Sedev, Rossen</creatorcontrib><creatorcontrib>Ralston, John</creatorcontrib><title>Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The wetting behavior of hydrophobic, microstructured surfaces containing arrays of pillars or holes has been investigated. The size of the surface features was fixed (20 μm), while their separation was varied to adjust the area fraction (0−80%). The wettability of structured surfaces for liquids resting in the Cassie state is strongly dependent on the continuity of the solid component. Microstructured square pillars and holes showed distinct, asymmetric wetting hysteresis, consistent with our previous observations on flat, chemically heterogeneous surfaces. Furthermore, clear trends for the magnitude of contact angle hysteresis versus area fraction for the two types of microstructured surfaces are evident. The pinning energy associated with these surface features is estimated.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgWgpDLwA6gISQ8C3OPFYVYUiFTEAYoxs5wRS5VJ8kqFvj6tGhQEvlnU-Hf_6Cblk9I5Rzu4rk1LJpTJHZMxiTqM45ckxGdNEiiiRSozIGeKaUqqF1KdkxDRPYqbVmCxmuK1r6Hzpph_QdWXzOV1usQMPWOK0bcIr9-3mq7VBPJfOt9j53nW9h3z62vvCOMBzclKYCuFiuCfk_WHxNl9Gq5fHp_lsFRkhRRcBhFyFjjUIm8c8taC5zG2hLGVJypTSJkxCNkt1kehwQFmextrmgjvKxYTc7PdufPvdA3ZZXaKDqjINtD1mKuGSKSkCvN3DXV70UGQbX9bGbzNGs11n2aGzYK-Gpb2tIf-VQ0kBXA_AoDNV4U3jSjw4zuIQX_5xxmG2bnvfhC7--fAHDB1_vQ</recordid><startdate>20090519</startdate><enddate>20090519</enddate><creator>Priest, Craig</creator><creator>Albrecht, Trent W. J</creator><creator>Sedev, Rossen</creator><creator>Ralston, John</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090519</creationdate><title>Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces</title><author>Priest, Craig ; Albrecht, Trent W. J ; Sedev, Rossen ; Ralston, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priest, Craig</creatorcontrib><creatorcontrib>Albrecht, Trent W. J</creatorcontrib><creatorcontrib>Sedev, Rossen</creatorcontrib><creatorcontrib>Ralston, John</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priest, Craig</au><au>Albrecht, Trent W. J</au><au>Sedev, Rossen</au><au>Ralston, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-05-19</date><risdate>2009</risdate><volume>25</volume><issue>10</issue><spage>5655</spage><epage>5660</epage><pages>5655-5660</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The wetting behavior of hydrophobic, microstructured surfaces containing arrays of pillars or holes has been investigated. The size of the surface features was fixed (20 μm), while their separation was varied to adjust the area fraction (0−80%). The wettability of structured surfaces for liquids resting in the Cassie state is strongly dependent on the continuity of the solid component. Microstructured square pillars and holes showed distinct, asymmetric wetting hysteresis, consistent with our previous observations on flat, chemically heterogeneous surfaces. Furthermore, clear trends for the magnitude of contact angle hysteresis versus area fraction for the two types of microstructured surfaces are evident. The pinning energy associated with these surface features is estimated.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19275196</pmid><doi>10.1021/la804246a</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2009-05, Vol.25 (10), p.5655-5660 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_67241643 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Interfaces: Adsorption, Reactions, Films, Forces Surface physical chemistry |
title | Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Wetting%20Hysteresis%20on%20Hydrophobic%20Microstructured%20Surfaces&rft.jtitle=Langmuir&rft.au=Priest,%20Craig&rft.date=2009-05-19&rft.volume=25&rft.issue=10&rft.spage=5655&rft.epage=5660&rft.pages=5655-5660&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la804246a&rft_dat=%3Cproquest_cross%3E67241643%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a343t-ee827f959e3bd528be924dbf6b01781669ae3b927b09f79999e6b2859bd32c023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67241643&rft_id=info:pmid/19275196&rfr_iscdi=true |