Loading…
Characterization of somatic Ca2+ clearance mechanisms in young and mature hippocampal granule cells
Abstract Calcium is a key regulator for expression of genes relevant to survival and maturation of newborn neurons. Mammalian hippocampal dentate gyrus generates new granule cells (GCs) throughout adult life. We identified young and mature GCs in hippocampi of young adult mice according to their ele...
Saved in:
Published in: | Cell calcium (Edinburgh) 2009-05, Vol.45 (5), p.465-473 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Calcium is a key regulator for expression of genes relevant to survival and maturation of newborn neurons. Mammalian hippocampal dentate gyrus generates new granule cells (GCs) throughout adult life. We identified young and mature GCs in hippocampi of young adult mice according to their electrical properties, and investigated contributions of Na/Ca exchanger (NCX), sarco-endoplasmic reticulum Ca2+ -ATPase (SERCA), plasma membrane Ca2+ -ATPase (PMCA) and mitochondria to Ca2+ clearance in somata of GCs. Somatic Ca2+ clearance was increased by about 50% as GCs matured. NCX activity increased proportionally during maturation with its relative contribution kept about 40% both in young and mature GCs. On the other hand, the developmental increases in activities of mitochondria and SERCA resulted in higher contributions to Ca2+ clearance in mature GCs than in young GCs. Especially mitochondrial function was most highly enhanced during maturation. PMCA activity, however, did not increase during maturation. Low Ca2+ clearance in immature GCs might facilitate higher Ca2+ accumulation during network activity, which in turn help survival of young GCs. |
---|---|
ISSN: | 0143-4160 1532-1991 |
DOI: | 10.1016/j.ceca.2009.03.004 |