Loading…

Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission

Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 funct...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-05, Vol.284 (20), p.13843-13855
Main Authors: Dagda, Ruben K., Cherra, Salvatore J., Kulich, Scott M., Tandon, Anurag, Park, David, Chu, Charleen T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823
cites cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823
container_end_page 13855
container_issue 20
container_start_page 13843
container_title The Journal of biological chemistry
container_volume 284
creator Dagda, Ruben K.
Cherra, Salvatore J.
Kulich, Scott M.
Tandon, Anurag
Park, David
Chu, Charleen T.
description Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.
doi_str_mv 10.1074/jbc.M808515200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67245056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820582392</els_id><sourcerecordid>67245056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</originalsourceid><addsrcrecordid>eNqFkTFv1DAYhi0EokdhZQQPiC3HZydOnBFVPai40kqlEpvl2F8SV3fxYTuF_nsMOakTwoO9PO8j630Jec1gzaCpPtx1Zn0pQQomOMATsmIgy6IU7PtTsgLgrGi5kCfkRYx3kE_VsufkhLW8aYHxFRm2Pkbqe3p98fULo5t5Msn5iV4Hv_cJI710yR9GPTzQNAY_DyM973s0KYcmevXLWZ3cPdKbFDCL9GT_JszoJxuc3tGNizELX5Jnvd5FfHV8T8nt5vzb2edie_Xp4uzjtjA156looBWojSih66sG66qxEqBmHdRgWyl62fbSoGwsy6hueKlNjdjpWnC0kpen5P3iPQT_Y8aY1N5Fg7udntDPUdUNrwSI-r8gz_XKtoIMrhfQhFxVwF4dgtvr8KAYqD8bqLyBetwgB94czXO3R_uIH0vPwLsFGN0w_nQBVedyY7hXXFaKZ2spqzJjbxes117pIbiobm84sBJYzWW-MiEXAnOj9w6DisbhZNBmqUnKevevT_4GyGipzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21078940</pqid></control><display><type>article</type><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><source>ScienceDirect</source><source>Open Access: PubMed Central</source><creator>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</creator><creatorcontrib>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</creatorcontrib><description>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M808515200</identifier><identifier>PMID: 19279012</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autophagy - physiology ; Autophagy-Related Protein 7 ; Gene Knockdown Techniques ; Homeostasis - physiology ; Humans ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondria - genetics ; Mitochondria - metabolism ; Oxidative Stress - physiology ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Ubiquitin-Activating Enzymes - genetics ; Ubiquitin-Activating Enzymes - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-05, Vol.284 (20), p.13843-13855</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</citedby><cites>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820582392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19279012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagda, Ruben K.</creatorcontrib><creatorcontrib>Cherra, Salvatore J.</creatorcontrib><creatorcontrib>Kulich, Scott M.</creatorcontrib><creatorcontrib>Tandon, Anurag</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><creatorcontrib>Chu, Charleen T.</creatorcontrib><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</description><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 7</subject><subject>Gene Knockdown Techniques</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidative Stress - physiology</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Ubiquitin-Activating Enzymes - genetics</subject><subject>Ubiquitin-Activating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkTFv1DAYhi0EokdhZQQPiC3HZydOnBFVPai40kqlEpvl2F8SV3fxYTuF_nsMOakTwoO9PO8j630Jec1gzaCpPtx1Zn0pQQomOMATsmIgy6IU7PtTsgLgrGi5kCfkRYx3kE_VsufkhLW8aYHxFRm2Pkbqe3p98fULo5t5Msn5iV4Hv_cJI710yR9GPTzQNAY_DyM973s0KYcmevXLWZ3cPdKbFDCL9GT_JszoJxuc3tGNizELX5Jnvd5FfHV8T8nt5vzb2edie_Xp4uzjtjA156looBWojSih66sG66qxEqBmHdRgWyl62fbSoGwsy6hueKlNjdjpWnC0kpen5P3iPQT_Y8aY1N5Fg7udntDPUdUNrwSI-r8gz_XKtoIMrhfQhFxVwF4dgtvr8KAYqD8bqLyBetwgB94czXO3R_uIH0vPwLsFGN0w_nQBVedyY7hXXFaKZ2spqzJjbxes117pIbiobm84sBJYzWW-MiEXAnOj9w6DisbhZNBmqUnKevevT_4GyGipzw</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Dagda, Ruben K.</creator><creator>Cherra, Salvatore J.</creator><creator>Kulich, Scott M.</creator><creator>Tandon, Anurag</creator><creator>Park, David</creator><creator>Chu, Charleen T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090515</creationdate><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><author>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 7</topic><topic>Gene Knockdown Techniques</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidative Stress - physiology</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Ubiquitin-Activating Enzymes - genetics</topic><topic>Ubiquitin-Activating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagda, Ruben K.</creatorcontrib><creatorcontrib>Cherra, Salvatore J.</creatorcontrib><creatorcontrib>Kulich, Scott M.</creatorcontrib><creatorcontrib>Tandon, Anurag</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><creatorcontrib>Chu, Charleen T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagda, Ruben K.</au><au>Cherra, Salvatore J.</au><au>Kulich, Scott M.</au><au>Tandon, Anurag</au><au>Park, David</au><au>Chu, Charleen T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-05-15</date><risdate>2009</risdate><volume>284</volume><issue>20</issue><spage>13843</spage><epage>13855</epage><pages>13843-13855</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19279012</pmid><doi>10.1074/jbc.M808515200</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-05, Vol.284 (20), p.13843-13855
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_67245056
source ScienceDirect; Open Access: PubMed Central
subjects Autophagy - physiology
Autophagy-Related Protein 7
Gene Knockdown Techniques
Homeostasis - physiology
Humans
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Mitochondria - genetics
Mitochondria - metabolism
Oxidative Stress - physiology
Parkinson Disease - genetics
Parkinson Disease - metabolism
Protein Kinases - genetics
Protein Kinases - metabolism
Ubiquitin-Activating Enzymes - genetics
Ubiquitin-Activating Enzymes - metabolism
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
title Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20PINK1%20Function%20Promotes%20Mitophagy%20through%20Effects%20on%20Oxidative%20Stress%20and%20Mitochondrial%20Fission&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Dagda,%20Ruben%20K.&rft.date=2009-05-15&rft.volume=284&rft.issue=20&rft.spage=13843&rft.epage=13855&rft.pages=13843-13855&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M808515200&rft_dat=%3Cproquest_cross%3E67245056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21078940&rft_id=info:pmid/19279012&rfr_iscdi=true