Loading…
Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 funct...
Saved in:
Published in: | The Journal of biological chemistry 2009-05, Vol.284 (20), p.13843-13855 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823 |
---|---|
cites | cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823 |
container_end_page | 13855 |
container_issue | 20 |
container_start_page | 13843 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Dagda, Ruben K. Cherra, Salvatore J. Kulich, Scott M. Tandon, Anurag Park, David Chu, Charleen T. |
description | Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis. |
doi_str_mv | 10.1074/jbc.M808515200 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67245056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820582392</els_id><sourcerecordid>67245056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</originalsourceid><addsrcrecordid>eNqFkTFv1DAYhi0EokdhZQQPiC3HZydOnBFVPai40kqlEpvl2F8SV3fxYTuF_nsMOakTwoO9PO8j630Jec1gzaCpPtx1Zn0pQQomOMATsmIgy6IU7PtTsgLgrGi5kCfkRYx3kE_VsufkhLW8aYHxFRm2Pkbqe3p98fULo5t5Msn5iV4Hv_cJI710yR9GPTzQNAY_DyM973s0KYcmevXLWZ3cPdKbFDCL9GT_JszoJxuc3tGNizELX5Jnvd5FfHV8T8nt5vzb2edie_Xp4uzjtjA156looBWojSih66sG66qxEqBmHdRgWyl62fbSoGwsy6hueKlNjdjpWnC0kpen5P3iPQT_Y8aY1N5Fg7udntDPUdUNrwSI-r8gz_XKtoIMrhfQhFxVwF4dgtvr8KAYqD8bqLyBetwgB94czXO3R_uIH0vPwLsFGN0w_nQBVedyY7hXXFaKZ2spqzJjbxes117pIbiobm84sBJYzWW-MiEXAnOj9w6DisbhZNBmqUnKevevT_4GyGipzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21078940</pqid></control><display><type>article</type><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><source>ScienceDirect</source><source>Open Access: PubMed Central</source><creator>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</creator><creatorcontrib>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</creatorcontrib><description>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M808515200</identifier><identifier>PMID: 19279012</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autophagy - physiology ; Autophagy-Related Protein 7 ; Gene Knockdown Techniques ; Homeostasis - physiology ; Humans ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondria - genetics ; Mitochondria - metabolism ; Oxidative Stress - physiology ; Parkinson Disease - genetics ; Parkinson Disease - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Ubiquitin-Activating Enzymes - genetics ; Ubiquitin-Activating Enzymes - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-05, Vol.284 (20), p.13843-13855</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</citedby><cites>FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820582392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19279012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagda, Ruben K.</creatorcontrib><creatorcontrib>Cherra, Salvatore J.</creatorcontrib><creatorcontrib>Kulich, Scott M.</creatorcontrib><creatorcontrib>Tandon, Anurag</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><creatorcontrib>Chu, Charleen T.</creatorcontrib><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</description><subject>Autophagy - physiology</subject><subject>Autophagy-Related Protein 7</subject><subject>Gene Knockdown Techniques</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Oxidative Stress - physiology</subject><subject>Parkinson Disease - genetics</subject><subject>Parkinson Disease - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Ubiquitin-Activating Enzymes - genetics</subject><subject>Ubiquitin-Activating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkTFv1DAYhi0EokdhZQQPiC3HZydOnBFVPai40kqlEpvl2F8SV3fxYTuF_nsMOakTwoO9PO8j630Jec1gzaCpPtx1Zn0pQQomOMATsmIgy6IU7PtTsgLgrGi5kCfkRYx3kE_VsufkhLW8aYHxFRm2Pkbqe3p98fULo5t5Msn5iV4Hv_cJI710yR9GPTzQNAY_DyM973s0KYcmevXLWZ3cPdKbFDCL9GT_JszoJxuc3tGNizELX5Jnvd5FfHV8T8nt5vzb2edie_Xp4uzjtjA156looBWojSih66sG66qxEqBmHdRgWyl62fbSoGwsy6hueKlNjdjpWnC0kpen5P3iPQT_Y8aY1N5Fg7udntDPUdUNrwSI-r8gz_XKtoIMrhfQhFxVwF4dgtvr8KAYqD8bqLyBetwgB94czXO3R_uIH0vPwLsFGN0w_nQBVedyY7hXXFaKZ2spqzJjbxes117pIbiobm84sBJYzWW-MiEXAnOj9w6DisbhZNBmqUnKevevT_4GyGipzw</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Dagda, Ruben K.</creator><creator>Cherra, Salvatore J.</creator><creator>Kulich, Scott M.</creator><creator>Tandon, Anurag</creator><creator>Park, David</creator><creator>Chu, Charleen T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090515</creationdate><title>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</title><author>Dagda, Ruben K. ; Cherra, Salvatore J. ; Kulich, Scott M. ; Tandon, Anurag ; Park, David ; Chu, Charleen T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Autophagy - physiology</topic><topic>Autophagy-Related Protein 7</topic><topic>Gene Knockdown Techniques</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Oxidative Stress - physiology</topic><topic>Parkinson Disease - genetics</topic><topic>Parkinson Disease - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Ubiquitin-Activating Enzymes - genetics</topic><topic>Ubiquitin-Activating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagda, Ruben K.</creatorcontrib><creatorcontrib>Cherra, Salvatore J.</creatorcontrib><creatorcontrib>Kulich, Scott M.</creatorcontrib><creatorcontrib>Tandon, Anurag</creatorcontrib><creatorcontrib>Park, David</creatorcontrib><creatorcontrib>Chu, Charleen T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagda, Ruben K.</au><au>Cherra, Salvatore J.</au><au>Kulich, Scott M.</au><au>Tandon, Anurag</au><au>Park, David</au><au>Chu, Charleen T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-05-15</date><risdate>2009</risdate><volume>284</volume><issue>20</issue><spage>13843</spage><epage>13855</epage><pages>13843-13855</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19279012</pmid><doi>10.1074/jbc.M808515200</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-05, Vol.284 (20), p.13843-13855 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_67245056 |
source | ScienceDirect; Open Access: PubMed Central |
subjects | Autophagy - physiology Autophagy-Related Protein 7 Gene Knockdown Techniques Homeostasis - physiology Humans Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Mitochondria - genetics Mitochondria - metabolism Oxidative Stress - physiology Parkinson Disease - genetics Parkinson Disease - metabolism Protein Kinases - genetics Protein Kinases - metabolism Ubiquitin-Activating Enzymes - genetics Ubiquitin-Activating Enzymes - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
title | Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20PINK1%20Function%20Promotes%20Mitophagy%20through%20Effects%20on%20Oxidative%20Stress%20and%20Mitochondrial%20Fission&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Dagda,%20Ruben%20K.&rft.date=2009-05-15&rft.volume=284&rft.issue=20&rft.spage=13843&rft.epage=13855&rft.pages=13843-13855&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M808515200&rft_dat=%3Cproquest_cross%3E67245056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-7095eac530bf47e647d80061b060d985f89f8ce87d1709a723ac6eeba652ed823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21078940&rft_id=info:pmid/19279012&rfr_iscdi=true |