Loading…

Hopfield neural networks for on-line parameter estimation

This paper addresses the problem of using Hopfield Neural Networks (HNNs) for on-line parameter estimation. As presented here, a HNN is a nonautonomous nonlinear dynamical system able to produce a time-evolving estimate of the actual parameterization. The stability analysis of the HNN is carried out...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2009-05, Vol.22 (4), p.450-462
Main Authors: Alonso, Hugo, Mendonça, Teresa, Rocha, Paula
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the problem of using Hopfield Neural Networks (HNNs) for on-line parameter estimation. As presented here, a HNN is a nonautonomous nonlinear dynamical system able to produce a time-evolving estimate of the actual parameterization. The stability analysis of the HNN is carried out under more general assumptions than those previously considered in the literature, yielding a weaker sufficient condition under which the estimation error asymptotically converges to zero. Furthermore, a robustness analysis is made, showing that, under the presence of perturbations, the estimation error converges to a bounded neighbourhood of zero, whose size decreases with the size of the perturbations. The results obtained are illustrated by means of two case studies, where the HNN is compared with two other methods.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2009.01.015