Loading…
A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation
A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2009-07, Vol.46 (4), p.1055-1065 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73 |
container_end_page | 1065 |
container_issue | 4 |
container_start_page | 1055 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 46 |
creator | Drechsler, F. Wolters, C.H. Dierkes, T. Si, H. Grasedyck, L. |
description | A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before. |
doi_str_mv | 10.1016/j.neuroimage.2009.02.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67269011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909001761</els_id><sourcerecordid>20749928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYso7h_9ChIQfOt4k0nT5HHdVVdY8EWfQ5rc7GRokzFphfn2pszAgi8DFxLC79xDzmkaQmFDgYrP-03EJacwmWfcMAC1AVaHv2quKaiuVV3PXq_3bttKStVVc1PKHipIuXzbXFHFBKe8u26Od8Qv40jKMszZ2DmkSMzhkJOxO-JTJj7EMCPBESeMM5lw3iVHBlPQkZKWbJGYaMZjCYUsJcRnYlMsdVeIlXjA0SzRHMmM9WmHLpsxFLPavGveeDMWfH8-b5vf377-un9sn35-_3F_99RaLtjcchCIrmOGWVBKic5xZjiAFBK984P3XDIOTinJuUIQQAdapZY6Cej77W3z6bS3furPgmXWUygWx9FETEvRomdCAaUXwS3vuWLqMsiggorJCn78D9zXxGpaRdMOhIR-y9d18kTZnErJ6PUh12bzUVPQa916r1_q1mvdGlgdXqUfzgbLMKF7EZ77rcCXE4A14b8Bsy42YLToQkY7a5fCZZd_gSTCXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506807341</pqid></control><display><type>article</type><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><source>Elsevier</source><creator>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</creator><creatorcontrib>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</creatorcontrib><description>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.02.024</identifier><identifier>PMID: 19264145</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Brain - physiology ; Brain Mapping - methods ; Cerebrospinal fluid ; Computer Simulation ; Conductivity ; Conductivity anisotropy ; Constrained Delaunay tetrahedralisation ; Dipole ; Electroencephalography ; Finite Element Analysis ; Finite element method ; Finite volume method ; Full subtraction approach ; Image Processing, Computer-Assisted - methods ; Models, Neurological ; Partial differential equations ; Projected subtraction approach ; Source reconstruction ; Transfer matrix ; Validation in four-layer sphere models</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-07, Vol.46 (4), p.1055-1065</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jul 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</citedby><cites>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19264145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drechsler, F.</creatorcontrib><creatorcontrib>Wolters, C.H.</creatorcontrib><creatorcontrib>Dierkes, T.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Grasedyck, L.</creatorcontrib><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebrospinal fluid</subject><subject>Computer Simulation</subject><subject>Conductivity</subject><subject>Conductivity anisotropy</subject><subject>Constrained Delaunay tetrahedralisation</subject><subject>Dipole</subject><subject>Electroencephalography</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Full subtraction approach</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Neurological</subject><subject>Partial differential equations</subject><subject>Projected subtraction approach</subject><subject>Source reconstruction</subject><subject>Transfer matrix</subject><subject>Validation in four-layer sphere models</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYso7h_9ChIQfOt4k0nT5HHdVVdY8EWfQ5rc7GRokzFphfn2pszAgi8DFxLC79xDzmkaQmFDgYrP-03EJacwmWfcMAC1AVaHv2quKaiuVV3PXq_3bttKStVVc1PKHipIuXzbXFHFBKe8u26Od8Qv40jKMszZ2DmkSMzhkJOxO-JTJj7EMCPBESeMM5lw3iVHBlPQkZKWbJGYaMZjCYUsJcRnYlMsdVeIlXjA0SzRHMmM9WmHLpsxFLPavGveeDMWfH8-b5vf377-un9sn35-_3F_99RaLtjcchCIrmOGWVBKic5xZjiAFBK984P3XDIOTinJuUIQQAdapZY6Cej77W3z6bS3furPgmXWUygWx9FETEvRomdCAaUXwS3vuWLqMsiggorJCn78D9zXxGpaRdMOhIR-y9d18kTZnErJ6PUh12bzUVPQa916r1_q1mvdGlgdXqUfzgbLMKF7EZ77rcCXE4A14b8Bsy42YLToQkY7a5fCZZd_gSTCXw</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>Drechsler, F.</creator><creator>Wolters, C.H.</creator><creator>Dierkes, T.</creator><creator>Si, H.</creator><creator>Grasedyck, L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090715</creationdate><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><author>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebrospinal fluid</topic><topic>Computer Simulation</topic><topic>Conductivity</topic><topic>Conductivity anisotropy</topic><topic>Constrained Delaunay tetrahedralisation</topic><topic>Dipole</topic><topic>Electroencephalography</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Full subtraction approach</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Neurological</topic><topic>Partial differential equations</topic><topic>Projected subtraction approach</topic><topic>Source reconstruction</topic><topic>Transfer matrix</topic><topic>Validation in four-layer sphere models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drechsler, F.</creatorcontrib><creatorcontrib>Wolters, C.H.</creatorcontrib><creatorcontrib>Dierkes, T.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Grasedyck, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drechsler, F.</au><au>Wolters, C.H.</au><au>Dierkes, T.</au><au>Si, H.</au><au>Grasedyck, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2009-07-15</date><risdate>2009</risdate><volume>46</volume><issue>4</issue><spage>1055</spage><epage>1065</epage><pages>1055-1065</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19264145</pmid><doi>10.1016/j.neuroimage.2009.02.024</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2009-07, Vol.46 (4), p.1055-1065 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_67269011 |
source | Elsevier |
subjects | Accuracy Algorithms Brain - physiology Brain Mapping - methods Cerebrospinal fluid Computer Simulation Conductivity Conductivity anisotropy Constrained Delaunay tetrahedralisation Dipole Electroencephalography Finite Element Analysis Finite element method Finite volume method Full subtraction approach Image Processing, Computer-Assisted - methods Models, Neurological Partial differential equations Projected subtraction approach Source reconstruction Transfer matrix Validation in four-layer sphere models |
title | A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20full%20subtraction%20approach%20for%20finite%20element%20method%20based%20source%20analysis%20using%20constrained%20Delaunay%20tetrahedralisation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Drechsler,%20F.&rft.date=2009-07-15&rft.volume=46&rft.issue=4&rft.spage=1055&rft.epage=1065&rft.pages=1055-1065&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.02.024&rft_dat=%3Cproquest_cross%3E20749928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506807341&rft_id=info:pmid/19264145&rfr_iscdi=true |