Loading…

A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation

A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2009-07, Vol.46 (4), p.1055-1065
Main Authors: Drechsler, F., Wolters, C.H., Dierkes, T., Si, H., Grasedyck, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73
cites cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73
container_end_page 1065
container_issue 4
container_start_page 1055
container_title NeuroImage (Orlando, Fla.)
container_volume 46
creator Drechsler, F.
Wolters, C.H.
Dierkes, T.
Si, H.
Grasedyck, L.
description A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.
doi_str_mv 10.1016/j.neuroimage.2009.02.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67269011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909001761</els_id><sourcerecordid>20749928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYso7h_9ChIQfOt4k0nT5HHdVVdY8EWfQ5rc7GRokzFphfn2pszAgi8DFxLC79xDzmkaQmFDgYrP-03EJacwmWfcMAC1AVaHv2quKaiuVV3PXq_3bttKStVVc1PKHipIuXzbXFHFBKe8u26Od8Qv40jKMszZ2DmkSMzhkJOxO-JTJj7EMCPBESeMM5lw3iVHBlPQkZKWbJGYaMZjCYUsJcRnYlMsdVeIlXjA0SzRHMmM9WmHLpsxFLPavGveeDMWfH8-b5vf377-un9sn35-_3F_99RaLtjcchCIrmOGWVBKic5xZjiAFBK984P3XDIOTinJuUIQQAdapZY6Cej77W3z6bS3furPgmXWUygWx9FETEvRomdCAaUXwS3vuWLqMsiggorJCn78D9zXxGpaRdMOhIR-y9d18kTZnErJ6PUh12bzUVPQa916r1_q1mvdGlgdXqUfzgbLMKF7EZ77rcCXE4A14b8Bsy42YLToQkY7a5fCZZd_gSTCXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506807341</pqid></control><display><type>article</type><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><source>Elsevier</source><creator>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</creator><creatorcontrib>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</creatorcontrib><description>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.02.024</identifier><identifier>PMID: 19264145</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Brain - physiology ; Brain Mapping - methods ; Cerebrospinal fluid ; Computer Simulation ; Conductivity ; Conductivity anisotropy ; Constrained Delaunay tetrahedralisation ; Dipole ; Electroencephalography ; Finite Element Analysis ; Finite element method ; Finite volume method ; Full subtraction approach ; Image Processing, Computer-Assisted - methods ; Models, Neurological ; Partial differential equations ; Projected subtraction approach ; Source reconstruction ; Transfer matrix ; Validation in four-layer sphere models</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-07, Vol.46 (4), p.1055-1065</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jul 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</citedby><cites>FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19264145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drechsler, F.</creatorcontrib><creatorcontrib>Wolters, C.H.</creatorcontrib><creatorcontrib>Dierkes, T.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Grasedyck, L.</creatorcontrib><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebrospinal fluid</subject><subject>Computer Simulation</subject><subject>Conductivity</subject><subject>Conductivity anisotropy</subject><subject>Constrained Delaunay tetrahedralisation</subject><subject>Dipole</subject><subject>Electroencephalography</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Full subtraction approach</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Neurological</subject><subject>Partial differential equations</subject><subject>Projected subtraction approach</subject><subject>Source reconstruction</subject><subject>Transfer matrix</subject><subject>Validation in four-layer sphere models</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYso7h_9ChIQfOt4k0nT5HHdVVdY8EWfQ5rc7GRokzFphfn2pszAgi8DFxLC79xDzmkaQmFDgYrP-03EJacwmWfcMAC1AVaHv2quKaiuVV3PXq_3bttKStVVc1PKHipIuXzbXFHFBKe8u26Od8Qv40jKMszZ2DmkSMzhkJOxO-JTJj7EMCPBESeMM5lw3iVHBlPQkZKWbJGYaMZjCYUsJcRnYlMsdVeIlXjA0SzRHMmM9WmHLpsxFLPavGveeDMWfH8-b5vf377-un9sn35-_3F_99RaLtjcchCIrmOGWVBKic5xZjiAFBK984P3XDIOTinJuUIQQAdapZY6Cej77W3z6bS3furPgmXWUygWx9FETEvRomdCAaUXwS3vuWLqMsiggorJCn78D9zXxGpaRdMOhIR-y9d18kTZnErJ6PUh12bzUVPQa916r1_q1mvdGlgdXqUfzgbLMKF7EZ77rcCXE4A14b8Bsy42YLToQkY7a5fCZZd_gSTCXw</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>Drechsler, F.</creator><creator>Wolters, C.H.</creator><creator>Dierkes, T.</creator><creator>Si, H.</creator><creator>Grasedyck, L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20090715</creationdate><title>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</title><author>Drechsler, F. ; Wolters, C.H. ; Dierkes, T. ; Si, H. ; Grasedyck, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebrospinal fluid</topic><topic>Computer Simulation</topic><topic>Conductivity</topic><topic>Conductivity anisotropy</topic><topic>Constrained Delaunay tetrahedralisation</topic><topic>Dipole</topic><topic>Electroencephalography</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Full subtraction approach</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Neurological</topic><topic>Partial differential equations</topic><topic>Projected subtraction approach</topic><topic>Source reconstruction</topic><topic>Transfer matrix</topic><topic>Validation in four-layer sphere models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drechsler, F.</creatorcontrib><creatorcontrib>Wolters, C.H.</creatorcontrib><creatorcontrib>Dierkes, T.</creatorcontrib><creatorcontrib>Si, H.</creatorcontrib><creatorcontrib>Grasedyck, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drechsler, F.</au><au>Wolters, C.H.</au><au>Dierkes, T.</au><au>Si, H.</au><au>Grasedyck, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2009-07-15</date><risdate>2009</risdate><volume>46</volume><issue>4</issue><spage>1055</spage><epage>1065</epage><pages>1055-1065</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A mathematical dipole is widely used as a model for the primary current source in electroencephalography (EEG) source analysis. In the governing Poisson-type differential equation, the dipole leads to a singularity on the right-hand side, which has to be treated specifically. In this paper, we will present a full subtraction approach where the total potential is divided into a singularity and a correction potential. The singularity potential is due to a dipole in an infinite region of homogeneous conductivity. The correction potential is computed using the finite element (FE) method. Special care is taken in order to evaluate the right-hand side integral appropriately with the objective of achieving highest possible convergence order for linear basis functions. Our new approach allows the construction of transfer matrices for fast computation of the inverse problem for anisotropic volume conductors. A constrained Delaunay tetrahedralisation (CDT) approach is used for the generation of high-quality FE meshes. We validate the new approach in a four-layer sphere model with a highly conductive cerebrospinal fluid (CSF) and an anisotropic skull compartment. For radial and tangential sources with eccentricities up to 1 mm below the CSF compartment, we achieve a maximal relative error of 0.71% in a CDT-FE model with 360 k nodes which is not locally refined around the source singularity and therefore useful for arbitrary dipole locations. The combination of the full subtraction approach with the high quality CDT meshes leads to accuracies that, to the best of the author's knowledge, have not yet been presented before.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19264145</pmid><doi>10.1016/j.neuroimage.2009.02.024</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2009-07, Vol.46 (4), p.1055-1065
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_67269011
source Elsevier
subjects Accuracy
Algorithms
Brain - physiology
Brain Mapping - methods
Cerebrospinal fluid
Computer Simulation
Conductivity
Conductivity anisotropy
Constrained Delaunay tetrahedralisation
Dipole
Electroencephalography
Finite Element Analysis
Finite element method
Finite volume method
Full subtraction approach
Image Processing, Computer-Assisted - methods
Models, Neurological
Partial differential equations
Projected subtraction approach
Source reconstruction
Transfer matrix
Validation in four-layer sphere models
title A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20full%20subtraction%20approach%20for%20finite%20element%20method%20based%20source%20analysis%20using%20constrained%20Delaunay%20tetrahedralisation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Drechsler,%20F.&rft.date=2009-07-15&rft.volume=46&rft.issue=4&rft.spage=1055&rft.epage=1065&rft.pages=1055-1065&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.02.024&rft_dat=%3Cproquest_cross%3E20749928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-406eed52a2c099965d42a400868efdfbff48240d998449e0601b1c46c1d80ef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506807341&rft_id=info:pmid/19264145&rfr_iscdi=true