Loading…

Issues associated with residual cell-substrate DNA in viral vaccines

The presence of some residual cellular DNA derived from the production-cell substrate in viral vaccines is inevitable. Whether this DNA represents a safety concern, particularly if the cell substrate is derived from a tumor or is tumorigenic, is unknown. DNA has two biological activities that need t...

Full description

Saved in:
Bibliographic Details
Published in:Biologicals 2009-06, Vol.37 (3), p.190-195
Main Authors: Sheng-Fowler, Li, Lewis, Andrew M., Peden, Keith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presence of some residual cellular DNA derived from the production-cell substrate in viral vaccines is inevitable. Whether this DNA represents a safety concern, particularly if the cell substrate is derived from a tumor or is tumorigenic, is unknown. DNA has two biological activities that need to be considered. First, DNA can be oncogenic; second, DNA can be infectious. As part of our studies to assess the risk of residual cell-substrate DNA in viral vaccines, we have established assays that can quantify the biological activities of DNA. From data obtained using these assays, we have estimated the risk of an oncogenic or an infectious event from DNA. Because these estimates were derived from the most sensitive assays identified so far, they likely represent worst-case estimates. In addition, methods that inactivate the biological activities of DNA can be assessed and estimations of risk reduction by these treatments can be made. In this paper, we discuss our approaches to address potential safety issues associated with residual cellular DNA from neoplastic cell substrates in viral vaccines, summarize the development of assays to quantify the oncogenic and infectivity activities of DNA, and discuss methods to reduce the biological activities of DNA.
ISSN:1045-1056
1095-8320
DOI:10.1016/j.biologicals.2009.02.015