Loading…
Effect of Surface Composition on the Adsorption of Photosystem I onto Alkanethiolate Self-Assembled Monolayers on Gold
We have used self-assembled monolayers (SAMs) prepared from ω-terminated alkanethiols on gold to generate model surfaces and examine the effect of surface composition on the adsorption of Photosystem I (PSI), stabilized in aqueous solution by Triton X-100. Triton-stabilized PSI adsorbs to high-energ...
Saved in:
Published in: | Langmuir 2004-05, Vol.20 (10), p.4033-4038 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have used self-assembled monolayers (SAMs) prepared from ω-terminated alkanethiols on gold to generate model surfaces and examine the effect of surface composition on the adsorption of Photosystem I (PSI), stabilized in aqueous solution by Triton X-100. Triton-stabilized PSI adsorbs to high-energy surfaces prepared from HO- and HO2C-terminated alkanethiols but does not adsorb to low-energy surfaces. The inhibition of PSI adsorption at low-energy surfaces is consistent with the presence of a layer of Triton X-100 that adsorbs atop the hydrophobic SAM and presents a protein-resistant poly(ethylene glycol) (PEG) surface. While the presence of the PEG surface prevents the adsorption of PSI, the displacement of the inhibiting layer of Triton X-100 by dodecanol, a more active surfactant, greatly enhances the adsorption of PSI. This inhibiting effect by Triton X-100 can be extended to other protein systems such as bovine serum albumin. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la0356809 |