Loading…

The influence of endocrine disrupting chemicals on the proliferation of ERalpha knockdown-human breast cancer cell line MCF-7; new attempts by RNAi technology

Bisphenol A (BPA) is a monomer use in manufacturing a wide range of chemical products which include epoxy resins and polycarbonate. It has been reported that BPA increases the cell proliferation activity of human breast cancer MCF-7 cells as well as 17-beta estradiol (E2) and diethylstilbestrol (DES...

Full description

Saved in:
Bibliographic Details
Published in:Acta histochemica et cytochemica 2009-01, Vol.42 (2), p.23-28
Main Authors: Miyakoshi, Takashi, Miyajima, Katsuhiro, Takekoshi, Susumu, Osamura, Robert Yoshiyuki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bisphenol A (BPA) is a monomer use in manufacturing a wide range of chemical products which include epoxy resins and polycarbonate. It has been reported that BPA increases the cell proliferation activity of human breast cancer MCF-7 cells as well as 17-beta estradiol (E2) and diethylstilbestrol (DES). However, BPA induces target genes through ER-dependent and ER-independent manners which are different from the actions induced by E2. Therefore, BPA may be unique in estrogen-dependent cell proliferation compared to other endocrine disrupting chemicals (EDCs). In the present study, to test whether ERalpha is essential to the BPA-induced proliferation on MCF-7 cells, we suppressed the ERalpha expression of MCF-7 cells by RNA interference (RNAi). Proliferation effects in the presence of E2, DES and BPA were not observed in ERalpha-knockdown MCF-7 cells in comparison with control MCF-7. In addition, a marker of proliferative potential, MIB-1 labeling index (LI), showed no change in BPA-treated groups compared with vehicle-treated groups on ERalpha-knockdown MCF-7 cells. In conclusion, we demonstrated that ERalpha has a role in BPA-induced cell proliferation as well as E2 and DES. Moreover, this study indicated that the direct knockdown of ERalpha using RNAi serves as an additional tool to evaluate, in parallel with MCF-7 cell proliferation assay, for potential EDCs.
ISSN:0044-5991
1347-5800
DOI:10.1267/ahc.08036