Loading…

Changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process

Age-related changes in the balance between endogenous pro-oxidative and antioxidative processes in the freshwater cladoceran Daphnia magna (Crustacea) were assessed. The activities of key antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase and levels of lipid pero...

Full description

Saved in:
Bibliographic Details
Published in:Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2005, Vol.140 (1), p.81-90
Main Authors: Barata, Carlos, Carlos Navarro, Juan, Varo, Inma, Carmen Riva, M., Arun, Solayan, Porte, Cinta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Age-related changes in the balance between endogenous pro-oxidative and antioxidative processes in the freshwater cladoceran Daphnia magna (Crustacea) were assessed. The activities of key antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) were determined in eight age classes, covering juvenile, young and senescent adults. Age-related changes in fatty acid composition were also measured to examine the contribution of polyunsaturated fatty acids (PUFA) in the peroxidation status of animals. Biochemical responses depicted in this study demonstrated that age-related decline in survival was accompanied by increasing oxidative stress and oxidative damage. Enhanced oxidative stress in aging D. magna was suggested by the significant increase in the formation of lipid peroxides, and a concomitant reduction of unsaturated fatty acids of 20 or more carbon atoms. Because aging was accompanied by selective loss of key antioxidant enzymes and small changes in the amount of PUFA, the breakdown of antioxidant defences might have directly contributed to oxidative stress, membrane lipid peroxide and a decline of survival. Indeed, the results reported here, indicate that age-related increases of lipid peroxides were at least partially due to the functional imbalance of enzymatic antioxidant defences.
ISSN:1096-4959
1879-1107
DOI:10.1016/j.cbpc.2004.09.025