Loading…
Development of an integrated optic oxygen sensor using a novel, generic platform
This paper describes the development of a generic platform for enhanced, integrated optic sensors based on fluorescence detection. The platform employs a novel optical configuration in order to achieve enhanced performance and has inherent multianalyte detection capability. The sensor element compri...
Saved in:
Published in: | Analyst (London) 2005-01, Vol.130 (1), p.41-45 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes the development of a generic platform for enhanced, integrated optic sensors based on fluorescence detection. The platform employs a novel optical configuration in order to achieve enhanced performance and has inherent multianalyte detection capability. The sensor element comprises a multimode ridge waveguide that has been patterned with an analyte-sensitive fluorescent spot, which is excited directly using a LED. The platform was applied to the detection of gaseous oxygen as a proof of principle. The sol-gel-derived sensor spots were doped with an oxygen-sensitive fluorescent dichlororuthenium dye complex and intensity-based calibration data were generated from the oxygen-dependent waveguide output. The sensor achieved a LOD of 0.62% and a resolution of less than 0.96% gaseous oxygen, which compares favourably with a similar, recently reported system. This device highlights the combination of inexpensive rapid prototyping techniques and a dedicated sensor enhancement strategy that together facilitate the production of an effective prototype sensor platform. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b409814p |