Loading…

Localization of Nitration and Chlorination Sites on Apolipoprotein A-I Catalyzed by Myeloperoxidase in Human Atheroma and Associated Oxidative Impairment in ABCA1-dependent Cholesterol Efflux from Macrophages

We recently reported that apolipoprotein A-I (apoA-I), the major protein component of high density lipoprotein, is a selective target for myeloperoxidase (MPO)-catalyzed nitration and chlorination in both and serum of subjects with cardiovascular disease. We further showed that the extent of both ap...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-01, Vol.280 (1), p.38-47
Main Authors: Zheng, Lemin, Settle, Megan, Brubaker, Gregory, Schmitt, Dave, Hazen, Stanley L., Smith, Jonathan D., Kinter, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recently reported that apolipoprotein A-I (apoA-I), the major protein component of high density lipoprotein, is a selective target for myeloperoxidase (MPO)-catalyzed nitration and chlorination in both and serum of subjects with cardiovascular disease. We further showed that the extent of both apoA-I nitration and chlorination correlated with functional impairment in reverse cholesterol transport activity of the isolated lipoprotein. Herein we used tandem mass spectrometry to map the sites of MPO-mediated apoA-I nitration and chlorination in vitro and in vivo and to relate the degree of site-specific modifications to loss of apoA-I lipid binding and cholesterol efflux functions. Of the seven tyrosine residues in apoA-I, Tyr-192, Tyr-166, Tyr-236, and Tyr-29 were nitrated and chlorinated in MPO-mediated reactions. Site-specific liquid chromatography-mass spectrometry quantitative analyses demonstrated that the favored modification site following exposure to MPO-generated oxidants is Tyr-192. MPO-dependent nitration and chlorination both proceed with Tyr-166 as a secondary site and with Tyr-236 and Tyr-29 modified only minimally. Parallel functional studies demonstrated dose-dependent losses of ABCA1-dependent cholesterol acceptor and lipid binding activities with apoA-I modification by MPO. Finally tandem mass spectrometry analyses showed that apoA-I in human atherosclerotic tissue is nitrated at the MPO-preferred sites, Tyr-192 and Tyr-166. The present studies suggest that site-specific modifications of apoA-I by MPO are associated with impaired lipid binding and ABCA1-dependent cholesterol acceptor functions, providing a molecular mechanism that likely contributes to the clinical link between MPO levels and cardiovascular disease risk.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M407019200