Loading…

Phagocytosis-Induced Apoptosis in Macrophages Is Mediated by Up-Regulation and Activation of the Bcl-2 Homology Domain 3-Only Protein Bim

Cell death by apoptosis is important in immune cell homeostasis and in the defense against infectious microorganisms. The physiological event of uptake and intracellular destruction of bacteria is a powerful apoptotic stimulus to macrophages and neutrophil granulocytes. In this study, we provide a m...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2005-01, Vol.174 (2), p.671-679
Main Authors: Kirschnek, Susanne, Ying, Songmin, Fischer, Silke F, Hacker, Hans, Villunger, Andreas, Hochrein, Hubertus, Hacker, Georg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell death by apoptosis is important in immune cell homeostasis and in the defense against infectious microorganisms. The physiological event of uptake and intracellular destruction of bacteria is a powerful apoptotic stimulus to macrophages and neutrophil granulocytes. In this study, we provide a molecular analysis of phagocytosis-induced apoptosis. Apoptosis was blocked by Bcl-2 in a mouse macrophage cell line and in primary mouse macrophages. Analysis of the upstream mechanisms revealed that apoptosis was triggered by the Bcl-2 homology domain 3-only protein Bim/Bod. Contact with bacteria or bacterial components induced a strong increase in Bim-expression through TLR and MyD88. Inhibition of the MAPK p38 and JNK reduced both up-regulation of Bim and apoptosis. Phosphorylation of Bim was further observed in mouse macrophages, which appeared to be the result of TLR-dependent phosphatase inhibition. Although TLR-induced Bim was, unlike Bim in resting cells, not bound to the microtubuli cytoskeleton, the up-regulation of Bim was not sufficient to cause apoptosis. A second signal was required that was generated in the process of phagocytosis. Phagocytosis-induced apoptosis was strongly reduced in Bim(-/-) macrophages. These data provide the molecular context of a form of apoptosis that may serve to dispose of terminally differentiated phagocytes.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.174.2.671