Loading…
Critical examination of the supermolecule density functional theory calculations of intermolecular interactions
The results of calculations employing twelve different combinations of exchange and correlation functionals are compared with results of ab initio calculations for two different configurations of the water dimer and three different configurations of the thymine-adenine complex. None of the density f...
Saved in:
Published in: | The Journal of chemical physics 2005-01, Vol.122 (1), p.14117-14117 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The results of calculations employing twelve different combinations of exchange and correlation functionals are compared with results of ab initio calculations for two different configurations of the water dimer and three different configurations of the thymine-adenine complex. None of the density functional theory (DFT) treatments could properly reproduce the results of coupled-cluster calculations for all configurations examined. The DFT approaches perform well when the interaction energy is dominated by the electrostatic component and the dispersion energy is less important. Two mechanisms that compensate for the missing dispersion component were identified. The first one is the decrease of the magnitude of the intermolecular exchange-repulsion and the second one is the increase of the magnitude of the attractive deformation energy. For some functionals both effects are observed together, but for some other ones only the second effect occurs. The three correlation functionals that were examined were found to make only very small contributions to the deformation energy. The examination of angular and distance dependence of the interactions shows that the currently available DFT approaches are not suitable for developing intermolecular potential energy surfaces. They could however be used to find global minima on potential energy surfaces governed by intermolecular electrostatic interactions. Additional single point ab initio calculations are recommended as the means of validating optimized structures. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1829044 |